Constructing hierarchical task models using invariance analysis

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Jonsson, Anders, 1973-ca
  • dc.contributor.author Lotinac, Damirca
  • dc.date.accessioned 2017-03-21T08:46:23Z
  • dc.date.available 2017-03-21T08:46:23Z
  • dc.date.issued 2016
  • dc.description Comunicació presentada a la biennial European Conference on Artificial Intelligence (ECAI 2016), 22nd European Conference on Artificial Intelligence, celebrada a La Haia (Països Baixos) del 29 d'agost al 2 de septembre de 2016.
  • dc.description.abstract Hierarchical Task Networks (HTNs) are a common model for encoding knowledge about planning domains in the form of task decompositions. We present a novel algorithm that uses invariant analysis to construct an HTN from the PDDL description of a planning domain and a single representative instance. The algorithm defines two types of composite tasks that interact to achieve the goal of a planning instance. One type of task achieves fluents by traversing invariants in which only one fluent can be true at a time. The other type of task applies a single action, which first involves ensuring that the precondition of the action holds. The resulting HTN can be applied to any instance of the planning domain, and is provably sound. We show that the performance of our algorithm is comparable to algorithms that learn HTNs from examples and use added knowledge.en
  • dc.description.sponsorship This work is partially supported by the MINECO/FEDER grant TIN2015-67959 and the Maria de Maeztu Units of Excellence Programme MDM-2015-0502, MEC, Spain.
  • dc.format.mimetype application/pdfca
  • dc.identifier.citation Lotinac D, Jonsson A. Constructing hierarchical task models using invariance analysis. In: Kaminka GA, Fox M, Bouquet P, Hüllermeier E, Dignum V, Dignum F, van Harmelen F, editors. ECAI 2016. The 22nd European Conference on Artificial Intelligence; 2016 Aug 29-Sep 2; The Hague (Netherlands). Amsterdam (Netherlands): IOS Press. p. 1274-82. DOI: 10.3233/978-1-61499-672-9-1274
  • dc.identifier.doi http://dx.doi.org/10.3233/978-1-61499-672-9-1274
  • dc.identifier.uri http://hdl.handle.net/10230/28266
  • dc.language.iso eng
  • dc.publisher IOS Pressca
  • dc.relation.ispartof Kaminka GA, Fox M, Bouquet P, Hüllermeier E, Dignum V, Dignum F, van Harmelen F, editors. ECAI 2016. The 22nd European Conference on Artificial Intelligence; 2016 Aug 29-Sep 2; The Hague (Netherlands). Amsterdam (Netherlands): IOS Press. p. 1274-82.
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/TIN2015-67959
  • dc.rights © 2016 The Authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0) The final publication is available at IOS Press through http://dx.doi.org/10.3233/978-1-61499-672-9-1274
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by-nc/4.0/
  • dc.subject.other Intel·ligència artificial
  • dc.title Constructing hierarchical task models using invariance analysisca
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion