LaSTUS/TALN at SemEval-2019 task 6: identification and categorization of offensive language in social media with attention-based Bi-LSTM model
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Altin, Lutfiye Seda Mut
- dc.contributor.author Bravo Serrano, Àlex, 1984-
- dc.contributor.author Saggion, Horacio
- dc.date.accessioned 2022-09-20T06:02:11Z
- dc.date.available 2022-09-20T06:02:11Z
- dc.date.issued 2019
- dc.description Comunicació presentada a: 13th International Workshop on Semantic Evaluation, NAACL HLT 2019, celebrat del 6 al 7 de juny de 2019, a Minneapolis, Estats Units d'Amèrica.
- dc.description.abstract This paper describes a bidirectional LongShort Term Memory network for identifying offensive language in Twitter. Our system has been developed in the context of the SemEval 2019 Task 6 which comprises three different sub-tasks, namely A: Offensive Language Detection, B: Categorization of Offensive Language, C: Offensive Language Target Identification. We used a pre-trained Word Embeddings in tweet data, including information about emojis and hashtags. Our approach achieves good performance in the three subtasks.
- dc.format.mimetype application/pdf
- dc.identifier.citation Altin LSM, Bravo A, Saggion H. LaSTUS/TALN at SemEval-2019 task 6: identification and categorization of offensive language in social media with attention-based Bi-LSTM model. In: Proceedings of the 13th International Workshop on Semantic Evaluation, NAACL HLT 2019; 2019 June 6-7; Minneapolis, United States of America. Stroudsburg: The Association for Computational Linguistics;2019. p. 672-7.
- dc.identifier.uri http://hdl.handle.net/10230/54110
- dc.language.iso eng
- dc.publisher The Association for Computational Linguistics
- dc.relation.ispartof Proceedings of the 13th International Workshop on Semantic Evaluation, NAACL HLT 2019; 2019 June 6-7; Minneapolis, United States of America. Stroudsburg: The Association for Computational Linguistics;2019.
- dc.rights ©2019 Association for Computational Linguistics Materials are licensed on a Creative Commons Attribution 4.0 International License.
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri https://creativecommons.org/licenses/by/4.0/
- dc.subject.other Tractament de textos -- Informàtica
- dc.title LaSTUS/TALN at SemEval-2019 task 6: identification and categorization of offensive language in social media with attention-based Bi-LSTM model
- dc.type info:eu-repo/semantics/conferenceObject
- dc.type.version info:eu-repo/semantics/publishedVersion