Test time transform prediction for open set histopathological image recognition

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Galdran, Adrian
  • dc.contributor.author Hewitt, Katherine J.
  • dc.contributor.author Ghaffari Laleh, Narmin
  • dc.contributor.author Kather, Jakob N.
  • dc.contributor.author Carneiro, Gustavo
  • dc.contributor.author González Ballester, Miguel Ángel, 1973-
  • dc.date.accessioned 2023-03-07T08:09:24Z
  • dc.date.issued 2022
  • dc.description Comunicació presentada a 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), celebrat del 18 al 22 de setembre de 2022 a Sentosa, Singapur.
  • dc.description.abstract Tissue typology annotation in Whole Slide histological images is a complex and tedious, yet necessary task for the development of computational pathology models. We propose to address this problem by applying Open Set Recognition techniques to the task of jointly classifying tissue that belongs to a set of annotated classes, e.g. clinically relevant tissue categories, while rejecting in test time Open Set samples, i.e. images that belong to categories not present in the training set. To this end, we introduce a new approach for Open Set histopathological image recognition based on training a model to accurately identify image categories and simultaneously predict which data augmentation transform has been applied. In test time, we measure model confidence in predicting this transform, which we expect to be lower for images in the Open Set. We carry out comprehensive experiments in the context of colorectal cancer assessment from histological images, which provide evidence on the strengths of our approach to automatically identify samples from unknown categories. Code is released at https://github.com/agaldran/t3po.
  • dc.description.sponsorship This work was partially supported by a Marie Sklodowska-Curie Global Fellowship (No. 892297) and by Australian Research Council grants (DP180103232 and FT190100525).
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Galdran A, Hewitt KJ, Ghaffari Laleh N, Kather JN, Carneiro G, González Ballester MA. Test time transform prediction for open set histopathological image recognition. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical Image Computing and Computer Assisted Intervention (MICCAI 2022): 25th International Conference; 2022 Sep 18-22; Sentosa Island, Singapore. Cham: Springer; 2022. p. 263-72. DOI: 10.1007/978-3-031-16434-7_26
  • dc.identifier.doi http://dx.doi.org/10.1007/978-3-031-16434-7_26
  • dc.identifier.issn 0302-9743
  • dc.identifier.uri http://hdl.handle.net/10230/56078
  • dc.language.iso eng
  • dc.publisher Springer
  • dc.relation.ispartof Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical Image Computing and Computer Assisted Intervention (MICCAI 2022): 25th International Conference; 2022 Sep 18-22; Sentosa Island, Singapore. Cham: Springer; 2022. p. 263-72.
  • dc.relation.isreferencedby https://github.com/agaldran/t3po
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/892297
  • dc.rights © Springer This is a author's accepted manuscript of: Galdran A, Hewitt KJ, Ghaffari Laleh N, Kather JN, Carneiro G, González Ballester MA. Test time transform prediction for open set histopathological image recognition. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical Image Computing and Computer Assisted Intervention (MICCAI 2022): 25th International Conference; 2022 Sep 18-22; Sentosa Island, Singapore. Cham: Springer; 2022. p. 263–72. The final version is available online at: http://dx.doi.org/10.1007/978-3-031-16434-7_26
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Histopathological image analysis
  • dc.subject.keyword Open Set Recognition
  • dc.title Test time transform prediction for open set histopathological image recognition
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion