DCASE-models: a Python library for computational environmental sound analysis using deep-learning models

Citació

  • Zinemanas P, Hounie I, Cancela P, Font F, Rocamora M, Serra X.DCASE-models: a Python library for computational environmental sound analysis using deep-learning models. In: Ono N, Harada N, Kawaguchi Y, Mesaros A, Imoto K, Koizumi Y, Komatsu T, editors. Proceedings of the Fifth Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2020); 2020 Nov 2-3; Tokyo, Japan. [Tokyo]: DCASE; 2020. p. 240-4. DOI: 10.5281/zenodo.4061782

Enllaç permanent

Descripció

  • Resum

    This document presents DCASE-models, an open–source Python library for rapid prototyping of environmental sound analysis systems, with an emphasis on deep–learning models. Together with a collection of functions for dataset handling, data preparation, feature extraction, and evaluation, it includes a model interface to standardize the interaction of machine learning methods with the other system components. This also provides an abstraction layer that allows the use of different machine learning backends. The package includes Python scripts, Jupyter Notebooks, and a web application, to illustrate its usefulness. The library seeks to alleviate the process of releasing and maintaining the code of new models, improve research reproducibility, and simplify comparison of methods. We expect it to become a valuable resource for the community.
  • Descripció

    Comunicació presentada a: 5th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2020) celebrat el 2 i 3 de novembre de 2020 a Tòquio, Japó.
  • Mostra el registre complet