Towards a characterization of constant-factor approximable Min CSPs
Towards a characterization of constant-factor approximable Min CSPs
Citació
- Dalmau V, Krokhin A, Manokaran R. Towards a characterization of constant-factor approximable Min CSPs. In: Twenty-sixth annual ACM-SIAM symposium on Discrete algorithms; 2015 Jan 4-6; San Diego, CA. Philadelphia (PA): SIAM; 2015. p. 847-57. DOI: 10.1137/1.9781611973730.58
Enllaç permanent
Descripció
Resum
We study the approximability of Minimum Constraint Satisfaction Problems (Min CSPs) with a fixed finite constraint language Γ on an arbitrary finite domain. The goal in such a problem is to minimize the number of unsatisfied constraints in a given instance of CSP(Γ). A recent result of Ene et al. says that, under the mild technical condition that Γ contains the equality relation, the basic LP relaxation is optimal for constant-factor approximation for Min CSP(Γ) unless the Unique Games Conjecture fails. Using the algebraic approach to the CSP, we introduce a new natural algebraic condition, stable probability distributions on symmetric polymorphisms of a constraint language, and show that the presence of such distributions on polymorphisms of each arity is necessary and sufficient for the finiteness of the integrality gap for the basic LP relaxation of Min CSP(Γ). We also show how stable distributions on symmetric polymorphisms can in principle be used to round solutions of the basic LP relaxation, and how, for several examples that cover all previously known cases, this leads to efficient constant-factor approximation algorithms for Min CSP(Γ). Finally, we show that the absence of another condition, which is implied by stable distributions, leads to NP-hardness of constant-factor approximation.Descripció
Comunicació presentada al Twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, celebrat els dies 4 a 6 de gener de 2015 a San Diego, Califòrnia.