WikiMuTe: a web-sourced dataset of semantic descriptions for music audio

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Weck, Benno
  • dc.contributor.author Kirchhoff, Holger
  • dc.contributor.author Grosche, Peter
  • dc.contributor.author Serra, Xavier
  • dc.date.accessioned 2025-05-30T05:49:35Z
  • dc.date.available 2025-05-30T05:49:35Z
  • dc.date.issued 2024
  • dc.description.abstract Multi-modal deep learning techniques for matching free-form text with music have shown promising results in the field of Music Information Retrieval (MIR). Prior work is often based on large proprietary data while publicly available datasets are few and small in size. In this study, we present WikiMuTe, a new and open dataset containing rich semantic descriptions of music. The data is sourced from Wikipedia’s rich catalogue of articles covering musical works. Using a dedicated text-mining pipeline, we extract both long and short-form descriptions covering a wide range of topics related to music content such as genre, style, mood, instrumentation, and tempo. To show the use of this data, we train a model that jointly learns text and audio representations. The model is evaluated on two tasks: tag-based music retrieval and music auto-tagging. The results show that while our approach has state-of-the-art performance on multiple tasks, we still observe a difference in performance depending on the data used for training.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Weck B, Kirchhoff H, Grosche P, Serra X. WikiMuTe: a web-sourced dataset of semantic descriptions for music audio. In: Rudinac S, Hanjalic A, Liem C, Worring M, Jónsson B, Liu B, Yamakata Y, editors. Proceedings of the 30th International Conference on Multimedia Modeling (MMM); 2024 Jan 29 - Feb 2; Amsterdam, Netherlands. Berlin: Springer; 2024. p. 42-56 (LNCS; no. 14565). DOI: 10.1007/978-3-031-56435-2_4
  • dc.identifier.uri http://hdl.handle.net/10230/70565
  • dc.language.iso eng
  • dc.publisher Springer
  • dc.relation.ispartof Rudinac S, Hanjalic A, Liem C, Worring M, Jónsson B, Liu B, Yamakata Y, editors. Proceedings of the 30th International Conference on Multimedia Modeling (MMM); 2024 Jan 29 - Feb 2; Amsterdam, Netherlands. Berlin: Springer; 2024
  • dc.rights © Springer Nature Switzerland AG 2024. The final authenticated version is available online at https://doi.org/10.1007/978-3-031-56435-2_4
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Music information retrieval
  • dc.subject.keyword Cross-modal
  • dc.subject.keyword Text-mining
  • dc.title WikiMuTe: a web-sourced dataset of semantic descriptions for music audio
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion