MediaEval 2019: emotion and theme recognition in music using Jamendo

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Bogdanov, Dmitry
  • dc.contributor.author Porter, Alastair
  • dc.contributor.author Tovstogan, Philip
  • dc.contributor.author Won, Minz
  • dc.date.accessioned 2021-03-19T08:42:28Z
  • dc.date.available 2021-03-19T08:42:28Z
  • dc.date.issued 2019
  • dc.description Comunicació presentada a: MediaEval 2019 Workshop celebrat del 27 al 30 d'octubre de 2019 a Sophia Antipolis, Fraança.
  • dc.description.abstract This paper provides an overview of the Emotion and Theme recognition in Music task organized as part of the MediaEval 2019 Benchmarking Initiative for Multimedia Evaluation. The goal of this task is to automatically recognize the emotions and themes conveyed in a music recording by means of audio analysis. We provide a large dataset of audio and labels that the participants can use to train and evaluate their systems. We also provide a baseline solution that utilizes VGG-ish architecture. This overview paper presents the task challenges, the employed ground-truth information and dataset, and the evaluation methodology.
  • dc.description.sponsorship This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 765068. This work was funded by the predoctoral grant MDM-2015-0502- 17-2 from the Spanish Ministry of Economy and Competitiveness linked to the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502).
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Bogdanov D, Porter A, Tovstogan P, Won M. MediaEval 2019: emotion and theme recognition in music using Jamendo. In: Larson M, Hicks S, Constantin MG, Bischke B, Porter A, Zhao P, Lux M, Cabrera Quiros L, Calandre J, Jones G, editors. MediaEval’19, Multimedia Benchmark Workshop; 2019 Oct 27-30, Sophia Antipolis, France. Aachen: CEUR; 2019. [3 p.]
  • dc.identifier.issn 1613-0073
  • dc.identifier.uri http://hdl.handle.net/10230/46860
  • dc.language.iso eng
  • dc.publisher CEUR Workshop Proceedings
  • dc.relation.ispartof Larson M, Hicks S, Constantin MG, Bischke B, Porter A, Zhao P, Lux M, Cabrera Quiros L, Calandre J, Jones G, editors. MediaEval’19, Multimedia Benchmark Workshop; 2019 Oct 27-30, Sophia Antipolis, France. Aachen: CEUR; 2019.
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/765068
  • dc.rights Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri https://creativecommons.org/licenses/by/4.0/
  • dc.title MediaEval 2019: emotion and theme recognition in music using Jamendo
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion