Generalized gradient on vector bundle – application to image denoising

Citació

  • Batard T, Bertalmío M. Generalized gradient on vector bundle – application to image denoising. In: Kuijper A, Bredies K, Pock T, Bischof H, editors. Scale space and variational methods in computer vision: 4th International Conference, (SSVM 2013); 2013 Jun 2-6; Leibnitz, Austria. Heidelberg: Springer Berlin; 2013. p. 12-23. (LNCS; no. 7893). DOI:10.1007/978-3-642-38267-3_2

Enllaç permanent

Descripció

  • Resum

    We introduce a gradient operator that generalizes the Euclidean and Riemannian gradients. This operator acts on sections of vector bundles and is determined by three geometric data: a Riemannian metric on the base manifold, a Riemannian metric and a covariant derivative on the vector bundle. Under the assumption that the covariant derivative is compatible with the metric of the vector bundle, we consider the problems of minimizing the L2 and L1 norms of the gradient. In the L2 case, the gradient descent for reaching the solutions is a heat equation of a differential operator of order two called connection Laplacian. We present an application to color image denoising by replacing the regularizing term in the Rudin-Osher-Fatemi (ROF) denoising model by the L1 norm of a generalized gradient associated with a well-chosen covariant derivative. Experiments are validated by computations of the PSNR and Q-index.
  • Descripció

    Comunicació presentada a: 4th International Conference, (SSVM 2013, celebrada del 2 al 6 de juny de 2013 a Leibnitz, Àustria.
  • Mostra el registre complet