MusAV: a dataset of relative arousal-valence annotations for validation of audio models

Citació

  • Bogdanov D, Lizarraga-Seijas X, Alonso-Jiménez P, Serra X. MusAV: a dataset of relative arousal-valence annotations for validation of audio models. In: Rao P, Murthy H, Srinivasamurthy A, Bittner R, Caro Repetto R, Goto M, Serra X, Miron M, editors. Proceedings of the 23nd International Society for Music Information Retrieval Conference (ISMIR 2022); 2022 Dec 4-8; Bengaluru, India. [Canada]: International Society for Music Information Retrieval; 2022. p. 650-8. DOI: 10.5281/zenodo.7316746

Enllaç permanent

Descripció

  • Resum

    We present MusAV, a new public benchmark dataset for comparative validation of arousal and valence (AV) regression models for audio-based music emotion recognition. To gather the ground truth, we rely on relative judgments instead of absolute values to simplify the manual annotation process and improve its consistency. We build MusAV by gathering comparative annotations of arousal and valence on pairs of tracks, using track audio previews and metadata from the Spotify API. The resulting dataset contains 2,092 track previews covering 1,404 genres, with pairwise relative AV judgments by 20 annotators and various subsets of the ground truth based on different levels of annotation agreement. We demonstrate the use of the dataset in an example study evaluating nine models for AV regression that we train based on state-of-the-art audio embeddings and three existing datasets of absolute AV annotations. The results on MusAV offer a view of the performance of the models complementary to the metrics obtained during training and provide insights into the impact of the considered datasets and embeddings on the generalization abilities of the models.
  • Descripció

    Comunicació presentada a 23nd International Society for Music Information Retrieval Conference (ISMIR 2022), celebrat del 4 al 8 de desembre de 2022 a Bangalore, Índia.
  • Mostra el registre complet