Timbre analysis of music audio signals with convolutional neural networks

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Pons Puig, Jordica
  • dc.contributor.author Slizovskaia, Olgaca
  • dc.contributor.author Gómez Gutiérrez, Emilia, 1975-ca
  • dc.contributor.author Serra, Xavierca
  • dc.date.accessioned 2018-02-26T11:17:46Z
  • dc.date.available 2018-02-26T11:17:46Z
  • dc.date.issued 2017
  • dc.description Comunicació presentada a la EUSIPCO 2017: 25th European Signal Processing Conference, celebrada els dies 28 d'agost a 2 de setembre de 2017 a Kos, Grècia.
  • dc.description.abstract The focus of this work is to study how to efficiently tailor Convolutional Neural Networks (CNNs) towards learning timbre representations from log-mel magnitude spectrograms. We first review the trends when designing CNN architectures. Through this literature overview we discuss which are the crucial points to consider for efficiently learning timbre representations using CNNs. From this discussion we propose a design strategy meant to capture the relevant time-frequency contexts for learning timbre, which permits using domain knowledge for designing architectures. In addition, one of our main goals is to design efficient CNN architectures – what reduces the risk of these models to over-fit, since CNNs’ number of parameters is minimized. Several architectures based on the design principles we propose are successfully assessed for different research tasks related to timbre: singing voice phoneme classification, musical instrument recognition and music auto-tagging.en
  • dc.description.sponsorship This work is partially supported by: the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502), the CompMusic project (ERC grant agreement 267583) and the CASAS Spanish research project (TIN2015-70816-R).
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Pons J, Slizovskaia O, Gong R, Gómez E, Serra X. Timbre analysis of music audio signals with convolutional neural networks. In: EUSIPCO 2017. 25th European Signal Processing Conference; 2017 Aug 28-Sep 2; Kos, Greece. [place unknown]: EURASIP; 2017. p. 2813-7.
  • dc.identifier.uri http://hdl.handle.net/10230/33998
  • dc.language.iso eng
  • dc.publisher European Association for Signal Processing (EURASIP)ca
  • dc.relation.ispartof EUSIPCO 2017. 25th European Signal Processing Conference; 2017 Aug 28-Sep 2; Kos, Greece. [place unknown]: EURASIP; 2017. p. 2813-7.
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/267583
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/TIN2015-70816-R
  • dc.rights © EURASIP. The paper is provided after EURASIP's permission.
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.other Intel·ligència artificial -- Aplicacions musicals
  • dc.subject.other So -- Tractament per ordinador
  • dc.title Timbre analysis of music audio signals with convolutional neural networksca
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion