Query-based topic detection using concepts and named entities

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Gialampoukidis, Iliasca
  • dc.contributor.author Liparas, Dimitrisca
  • dc.contributor.author Vrochidis, Stefanosca
  • dc.contributor.author Kompatsiaris, Ioannisca
  • dc.date.accessioned 2017-06-16T18:16:11Z
  • dc.date.available 2017-06-16T18:16:11Z
  • dc.date.issued 2016
  • dc.description Comunicació presentada a: 1st International Workshop on Multimodal Media Data Analytics, celebrat juntament amb 22nd European Conference on Artificial Intelligence (ECAI 2016), el 30 d'agost de 2016 a La Haia, Holanda.ca
  • dc.description.abstract In this paper, we present a framework for topic detection in news articles. The framework receives as input the results retrieved from a query-based search and clusters them by topic. To this end, the recently introduced “DBSCAN-Martingale” method for automatically estimating the number of topics and the well-established Latent Dirichlet Allocation topic modelling approach for the assignment of news articles into topics of interest, are utilized. Furthermore, the proposed query-based topic detection framework works on high-level textual features (such as concepts and named entities) that are extracted from news articles. Our topic detection approach is tackled as a text clustering task, without knowing the number of clusters and compares favorably to several text clustering approaches, in a public dataset of retrieved results, with respect to four representative queries.en
  • dc.description.sponsorship This work was supported by the projects MULTISENSOR (FP7-610411) and KRISTINA (H2020-645012), funded by the European Commission.en
  • dc.format.mimetype application/pdfca
  • dc.identifier.citation Gialampoukidis I, Liparas D, Vrochidis S, Kompatsiaris I. Query-based topic detection using concepts and named entities. In: Vrochidis S, Melero M, Wanner, Grivolla J, Estève Y. MMDA 2016 Multimodal Media Data Analytics Proceedings of the 1st International Workshop on Multimodal Media Data Analytics co-located with the 22nd European Conference on Artificial Intelligence (ECAI 2016); 2016 30 August; The Hague, Netherlands. [place unknown]: CEUR Workshop Proceedings, 2016. p. 18-22.
  • dc.identifier.uri http://hdl.handle.net/10230/32308
  • dc.language.iso eng
  • dc.publisher CEUR Workshop Proceedingsca
  • dc.relation.ispartof Vrochidis S, Melero M, Wanner, Grivolla J, Estève Y. MMDA 2016 Multimodal Media Data Analytics Proceedings of the 1st International Workshop on Multimodal Media Data Analytics co-located with the 22nd European Conference on Artificial Intelligence (ECAI 2016); 2016 30 August; The Hague, Netherlands. [place unknown]: CEUR Workshop Proceedings, 2016. p. 18-22.
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/645012
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610411
  • dc.rights © The authors. Atribución-NoComercial-SinDerivadas 3.0 España (CC BY-NC-ND 3.0 ES)
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.es
  • dc.title Query-based topic detection using concepts and named entitiesca
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion