State representation learning for goal-conditioned reinforcement learning
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Steccanella, Lorenzo
- dc.contributor.author Jonsson, Anders, 1973-
- dc.date.accessioned 2023-06-06T06:14:53Z
- dc.date.available 2023-06-06T06:14:53Z
- dc.date.issued 2022
- dc.description Comunicació presentada a European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022), celebrat del 19 al 23 de setembre de 2022 a Grenoble, França.
- dc.description.abstract This paper presents a novel state representation for reward-free Markov decision processes. The idea is to learn, in a self-supervised manner, an embedding space where distances between pairs of embedded states correspond to the minimum number of actions needed to transition between them. Compared to previous methods, our approach does not require any domain knowledge, learning from offline and unlabeled data. We show how this representation can be leveraged to learn goal-conditioned policies, providing a notion of similarity between states and goals and a useful heuristic distance to guide planning and reinforcement learning algorithms. Finally, we empirically validate our method in classic control domains and multi-goal environments, demonstrating that our method can successfully learn representations in large and/or continuous domains.
- dc.description.sponsorship Anders Jonsson is partially funded by the Spanish grant PID2019-108141GB-I00 and the European project TAILOR (H2020, GA 952215).
- dc.format.mimetype application/pdf
- dc.identifier.citation Steccanella L, Jonsson A. State representation learning for goal-conditioned reinforcement learning. In: Amini MR, Canu S, Fischer A, Guns T, Kralj Novak P, Tsoumakas G, editors. Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part IV; 2022 Sep 19-23; Grenoble, France. Cham: Springer; 2023. p. 84-99. DOI: 10.1007/978-3-031-26412-2_6
- dc.identifier.doi http://dx.doi.org/10.1007/978-3-031-26412-2_6
- dc.identifier.isbn 978-3-031-26411-5
- dc.identifier.issn 0302-9743
- dc.identifier.uri http://hdl.handle.net/10230/57052
- dc.language.iso eng
- dc.publisher Springer
- dc.relation.ispartof Amini MR, Canu S, Fischer A, Guns T, Kralj Novak P, Tsoumakas G, editors. Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part IV; 2022 Sep 19-23; Grenoble, France. Cham: Springer; 2023. p. 84-99.
- dc.relation.isreferencedby https://github.com/lorenzosteccanella/SRL
- dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/952215
- dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/PID2019-108141GB-I00
- dc.rights © Springer This is a author's accepted manuscript of: Steccanella L, Jonsson A. State representation learning for goal-conditioned reinforcement learning. In: Amini MR, Canu S, Fischer A, Guns T, Kralj Novak P, Tsoumakas G, editors. Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part IV; 2022 Sep 19-23; Grenoble, France. Cham: Springer; 2023. p. 84–99. The final version is available online at: http://dx.doi.org/10.1007/978-3-031-26412-2_6
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.subject.keyword Representation learning
- dc.subject.keyword Goal-conditioned reinforcement learning
- dc.subject.keyword Reward shaping
- dc.subject.keyword Reinforcement learning
- dc.title State representation learning for goal-conditioned reinforcement learning
- dc.type info:eu-repo/semantics/conferenceObject
- dc.type.version info:eu-repo/semantics/acceptedVersion