Recurrent neural network grammars

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Dyer, Chrisca
  • dc.contributor.author Kuncoro, Adhigunaca
  • dc.contributor.author Ballesteros, Miguelca
  • dc.contributor.author Smith, Noah A.ca
  • dc.date.accessioned 2016-12-12T10:24:20Z
  • dc.date.available 2016-12-12T10:24:20Z
  • dc.date.issued 2016ca
  • dc.description Comunicació presentada a la 2016 Conference of the North American Chapter of the Association for Computational Linguistics, celebrada a San Diego (CA, EUA) els dies 12 a 17 de juny 2016.ca
  • dc.description.abstract We introduce recurrent neural network grammars,/nprobabilistic models of sentences with/nexplicit phrase structure. We explain efficient/ninference procedures that allow application to/nboth parsing and language modeling. Experiments/nshow that they provide better parsing in/nEnglish than any single previously published/nsupervised generative model and better language/nmodeling than state-of-the-art sequential/nRNNs in English and Chinese.en
  • dc.description.sponsorship This work was sponsored in part by the Defense/nAdvanced Research Projects Agency (DARPA)/nInformation Innovation Office (I2O) under the/nLow Resource Languages for Emergent Incidents/n(LORELEI) program issued by DARPA/I2O under/nContract No. HR0011-15-C-0114; it was also supported/nin part by Contract No. W911NF-15-1-0543/nwith the DARPA and the Army Research Office/n(ARO). Approved for public release, distribution/nunlimited. The views expressed are those of the authors/nand do not reflect the official policy or position/nof the Department of Defense or the U.S. Government./nMiguel Ballesteros was supported by the/nEuropean Commission under the contract numbers/nFP7-ICT-610411 (project MULTISENSOR) and/nH2020-RIA-645012 (project KRISTINA).en
  • dc.format.mimetype application/pdfca
  • dc.identifier.citation Dyer C, Kuncoro A, Ballesteros M, Smith NA. Recurrent neural network grammars. In: Knight K, Lopez A, Mitchell M, editors. Human Language Technologies. 2016 Conference of the North American Chapter of the Association for Computational Linguistics; 2016 June 12-17; San Diego (CA, USA). [place unknown]: Association for Computational Linguistics (ACL); 2016. p. 199-209.ca
  • dc.identifier.uri http://hdl.handle.net/10230/27726
  • dc.language.iso engca
  • dc.publisher ACL (Association for Computational Linguistics)ca
  • dc.relation.ispartof Knight K, Lopez A, Mitchell M, editors. Human Language Technologies. 2016 Conference of the North American Chapter of the Association for Computational Linguistics; 2016 June 12-17; San Diego (CA, USA). [S.l.]: Association for Computational Linguistics (ACL); 2016. p. 199-209.
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/645012ca
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610411
  • dc.rights © ACL, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Licenseca
  • dc.rights.accessRights info:eu-repo/semantics/openAccessca
  • dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
  • dc.subject.other Tractament del llenguatge natural (Informàtica)ca
  • dc.subject.other Lingüística computacionalca
  • dc.title Recurrent neural network grammarsca
  • dc.type info:eu-repo/semantics/conferenceObjectca
  • dc.type.version info:eu-repo/semantics/publishedVersionca