Multi-instance dynamic ordinal random fields for weakly-supervised pain intensity estimation

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Ruiz Ovejero, Adriàca
  • dc.contributor.author Rudovic, Ognjenca
  • dc.contributor.author Binefa i Valls, Xavierca
  • dc.contributor.author Pantic, Majaca
  • dc.date.accessioned 2018-03-02T17:43:57Z
  • dc.date.available 2018-03-02T17:43:57Z
  • dc.date.issued 2017
  • dc.description Comunicació presentada a: Computer Vision – ACCV 2016, 13th Asian Conference on Computer Vision, celebrat a Taipei, Taiwan, del 20 al 24 de novembre de 2016.ca
  • dc.description.abstract In this paper, we address the Multi-Instance-Learning (MIL) problem when bag labels are naturally represented as ordinal variables (Multi-Instance-Ordinal Regression). Moreover, we consider the case where bags are temporal sequences of ordinal instances. To model this, we propose the novel Multi-Instance Dynamic Ordinal Random Fields (MI-DORF). In this model, we treat instance-labels inside the bag as latent ordinal states. The MIL assumption is modelled by incorporating a high-order cardinality potential relating bag and instance-labels, into the energy function. We show the benefits of the proposed approach on the task of weakly-supervised pain intensity estimation from the UNBC Shoulder-Pain Database. In our experiments, the proposed approach significantly outperforms alternative non-ordinal methods that either ignore the MIL assumption, or do not model dynamic information in target data.en
  • dc.description.sponsorship This paper is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grants agreement no. 645012 (KRISTINA), no. 645094 (SEWA) and no. 688835 (DE-ENIGMA). Adria Ruiz would also like to acknowledge Spanish Government to provide support under grant FPU13/01740.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Ruiz A, Rudovic O, Binefa X, Pantic M. Multi-instance dynamic ordinal random fields for weakly-supervised pain intensity estimation. In: Lai SH, Lepetit V, Nishino K, Sato Y. Computer Vision – ACCV 2016. 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II. [Cham]: Springer International Publishing, 2017. [17] p. (LNCS; no. 10112). DOI: 10.1007/978-3-319-54184-6_11
  • dc.identifier.doi http://dx.doi.org/10.1007/978-3-319-54184-6_11
  • dc.identifier.issn 0302-9743
  • dc.identifier.uri http://hdl.handle.net/10230/34042
  • dc.language.iso eng
  • dc.publisher Springerca
  • dc.relation.ispartof Lai SH, Lepetit V, Nishino K, Sato Y. Computer Vision – ACCV 2016. 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II. [Cham]: Springer International Publishing, 2017. [17] p. (LNCS; no. 10112).
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/645012
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/645094
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/688835
  • dc.rights © Springer The final publication is available at Springer via https://www.springerprofessional.de/multi-instance-dynamic-ordinal-random-fields-for-weakly-supervis/12130658
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.title Multi-instance dynamic ordinal random fields for weakly-supervised pain intensity estimationca
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion