Heuristic search for generalized stochastic shortest path MDPs

Citació

  • Kolobov A, Mausam, Weld DS, Geffner H. Heuristic search for generalized stochastic shortest path MDPs. In: Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling (ICAPS 2011): 2011 Jun 11-16; Freiburg, Germany. Palo Alto: AAAI Press; 2011. p. 130-7.

Enllaç permanent

Descripció

  • Resum

    Research in efficient methods for solving infinite-horizon MDPs has so far concentrated primarily on discounted MDPs and the more general stochastic shortest path problems (SSPs). These are MDPs with 1) an optimal value function V ∗ that is the unique solution of Bellman equation and 2) optimal policies that are the greedy policies w.r.t. V ∗ . This paper’s main contribution is the description of a new class of MDPs, that have well-defined optimal solutions that do not comply with either 1 or 2 above. We call our new class Generalized Stochastic Shortest Path (GSSP) problems. GSSP allows more general reward structure than SSP and subsumes several established MDP types including SSP, positive-bounded, negative, and discounted-reward models. While existing efficient heuristic search algorithms like LAO∗ and LRTDP are not guaranteed to converge to the optimal value function for GSSPs, we present a new heuristic-search-based family of algorithms, FRET (Find, Revise, Eliminate Traps). A preliminary empirical evaluation shows that FRET solves GSSPs much more efficiently than Value Iteration.
  • Descripció

    Comunicació presentada a: ICAPS 2011 celebrat de l'11 al 16 de juny de 2011 a Freiburg, Alemanya.
  • Mostra el registre complet