Monaural score-informed source separation for classical music using convolutional neural networks

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Miron, Mariusca
  • dc.contributor.author Janer Mestres, Jordica
  • dc.contributor.author Gómez Gutiérrez, Emilia, 1975-ca
  • dc.date.accessioned 2018-03-12T10:50:05Z
  • dc.date.available 2018-03-12T10:50:05Z
  • dc.date.issued 2017
  • dc.description Comunicació presentada a la 18th International Society for Music Information Retrieval Conference (ISMIR 2017), celebrada els dies 23 a 27 d'octubre de 2017 a Suzhou, Xina.
  • dc.description.abstract Score information has been shown to improve music source separation when included into non-negative matrix factorization (NMF) frameworks. Recently, deep learning approaches have outperformed NMF methods in terms of separation quality and processing time, and there is scope to extend them with score information. In this paper, we propose a score-informed separation system for classical music that is based on deep learning. We propose a method to derive training features from audio files and the corresponding coarsely aligned scores for a set of classical music pieces. Additionally, we introduce a convolutional neural network architecture (CNN) with the goal of estimating time-frequency masks for source separation. Our system is trained with synthetic renditions derived from the original scores and can be used to separate real-life performances based on the same scores, provided a coarse audio-to-score alignment. The proposed system achieves better performance (SDR and SIR) and is less computationally intensive than a score-informed NMF system on a dataset comprising Bach chorales.en
  • dc.description.sponsorship This work is partially supported by the Spanish Ministry of Economy and Competitiveness under CASAS project (TIN2015-70816-R) and by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM2015-0502).
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Miron M, Janer J, Gómez E. Monaural score-informed source separation for classical music using convolutional neural networks. In: Hu X, Cunningham SJ, Turnbull D, Duan Z. ISMIR 2017. 18th International Society for Music Information Retrieval Conference; 2017 Oct 23-27; Suzhou, China. [Canada]: ISMIR; 2017. p. 55-62.
  • dc.identifier.uri http://hdl.handle.net/10230/34086
  • dc.language.iso eng
  • dc.publisher International Society for Music Information Retrieval (ISMIR)ca
  • dc.relation.ispartof Hu X, Cunningham SJ, Turnbull D, Duan Z. ISMIR 2017. 18th International Society for Music Information Retrieval Conference; 2017 Oct 23-27; Suzhou, China. [Canada]: ISMIR; 2017. p. 55-62.
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/TIN2015-70816-R
  • dc.rights © Marius Miron, Jordi Janer, Emilia Gómez. Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Attribution: Marius Miron, Jordi Janer, Emilia Gomez. “Monaural score-informed source separation for classical music using convolutional neural networks”, 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017.
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.other Música -- Informàtica
  • dc.title Monaural score-informed source separation for classical music using convolutional neural networksca
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion