Geometric deep learning for the assessment of thrombosis risk in the left atrial appendage

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Morales, Xabier
  • dc.contributor.author Mill, Jordi
  • dc.contributor.author Simeon, Guillem
  • dc.contributor.author Juhl, Kristine Aavild
  • dc.contributor.author De Backer, Ole
  • dc.contributor.author Paulsen, Rasmus R.
  • dc.contributor.author Camara, Oscar
  • dc.date.accessioned 2022-10-18T15:21:52Z
  • dc.date.available 2022-10-18T15:21:52Z
  • dc.date.issued 2021
  • dc.description Comunicació presentada a: FIMH 2021 11th International Conference, celebrada del 21 al 25 de juny de 2021 a Stanford, CA, USA.
  • dc.description.abstract The assessment of left atrial appendage (LAA) thrombogenesis has experienced major advances with the adoption of patient-specific computational fluid dynamics (CFD) simulations. Nonetheless, due to the vast computational resources and long execution times required by fluid dynamics solvers, there is an ever-growing body of work aiming to develop surrogate models of fluid flow simulations based on neural networks. The present study builds on this foundation by developing a deep learning (DL) framework capable of predicting the endothelial cell activation potential (ECAP), linked to the risk of thrombosis, solely from the patient-specific LAA geometry. To this end, we leveraged recent advancements in Geometric DL, which seamlessly extend the unparalleled potential of convolutional neural networks (CNN), to non-Euclidean data such as meshes. The model was trained with a dataset combining 202 synthetic and 54 real LAA, predicting the ECAP distributions instantaneously, with an average mean absolute error of 0.563. Moreover, the resulting framework manages to predict the anatomical features related to higher ECAP values even when trained exclusively on synthetic cases.en
  • dc.description.sponsorship This work was supported by the Agency for Management of University and Research Grants of the Generalitat de Catalunya under the the Grants for the Contracting of New Research Staff Programme - FI (2020 FI B 00608) and the Spanish Ministry of Economy and Competitiveness under the Programme for the Formation of Doctors (PRE2018-084062), the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502) and the Retos Investigaci´on project (RTI2018-101193-B-I00). Additionally, this work was supported by the H2020 EU SimCardioTest project (Digital transformation in Health and Care SC1- DTH-06-2020; grant agreement No. 101016496).en
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Morales X, Mill J, Simeon G, Juhl KA, De Backer O, Paulsen RR, Camara O. Geometric deep learning for the assessment of thrombosis risk in the left atrial appendage. In: Ennis DB, Perotti LE, Wang VY, editors. Functional Imaging and Modeling of the Heart, 11th International Conference, FIMH 2021; 2021 Jun 21-25; Stanford, USA. Cham: Springer; 2021. p. 639-49. (LNCS; no.12738). DOI: 10.1007/978-3-030-78710-3_61
  • dc.identifier.doi http://doi.org/10.1007/978-3-030-78710-3_61
  • dc.identifier.isbn 9783030787103
  • dc.identifier.issn 0302-9743
  • dc.identifier.uri http://hdl.handle.net/10230/54473
  • dc.language.iso eng
  • dc.publisher Springer
  • dc.relation.ispartof Ennis DB, Perotti LE, Wang VY, editors. Functional Imaging and Modeling of the Heart, 11th International Conference, FIMH 2021; 2021 Jun 21-25; Stanford, USA. Cham: Springer; 2021. p. 639-49. (LNCS;no.12738).
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/PRE2018-084062
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101016496
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/RTI2018-101193-B-I00
  • dc.rights © Springer The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-030-78710-3_61
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Geometric deep learningen
  • dc.subject.keyword Left atrial appendageen
  • dc.subject.keyword Thrombus formationen
  • dc.subject.keyword Computational fluid dynamicen
  • dc.title Geometric deep learning for the assessment of thrombosis risk in the left atrial appendage
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion