A topic detection and visualisation system on social media posts

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Andreadis, Steliosca
  • dc.contributor.author Gialampoukidis, Iliasca
  • dc.contributor.author Vrochidis, Stefanosca
  • dc.contributor.author Kompatsiaris, Ioannisca
  • dc.date.accessioned 2018-03-21T16:33:16Z
  • dc.date.available 2018-03-21T16:33:16Z
  • dc.date.issued 2017
  • dc.description Comunicació presentada a: Internet Science. 4th International Conference, INSCI 2017 celebrada del 22 al 24 de novembre de 2017 a Thessaloniki, Grècia.ca
  • dc.description.abstract Large amounts of social media posts are produced on a daily basis and monitoring all of them is a challenging task. In this direction we demonstrate a topic detection and visualisation tool in Twitter data, which filters Twitter posts by topic or keyword, in two different languages; German and Turkish. The system is based on state-of-the-art news clustering methods and the tool has been created to handle streams of recent news information in a fast and user-friendly way. The user interface and user-system interaction examples are presented in detail.en
  • dc.description.sponsorship This work was supported by the EC-funded projects H2020-645012 (KRISTINA) and H2020-700475 (beAWARE).en
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Andreadis S, Gialampoukidis I, Vrochidis S, Kompatsiaris I. A topic detection and visualisation system on social media posts. In: Kompatsiaris I, Cave J, Satsiou A, Carle G, Passani A, Kontopoulos E, Diplaris S, McMillan D, editors. Internet Science. 4th International Conference, INSCI 2017 Proceedings; 2017 Nov 22-24; Thessaloniki, Greece. Cham: Springer; 2017. p. 421-7. (LNCS; no. 10673). DOI: 10.1007/978-3-319-70284-1_33
  • dc.identifier.doi http://dx.doi.org/10.1007/978-3-319-70284-1_33
  • dc.identifier.issn 0302-9743
  • dc.identifier.uri http://hdl.handle.net/10230/34229
  • dc.language.iso eng
  • dc.publisher Springerca
  • dc.relation.ispartof Kompatsiaris I, Cave J, Satsiou A, Carle G, Passani A, Kontopoulos E, Diplaris S, McMillan D, editors. Internet Science. 4th International Conference, INSCI 2017 Proceedings; 2017 Nov 22-24; Thessaloniki, Greece. Cham: Springer; 2017. p. 421-7. (LNCS; no. 10673).
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/645012
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020//700475
  • dc.rights © Springer The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-70284-1_33
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Topic detection and visualisationen
  • dc.subject.keyword Twitter postsen
  • dc.subject.keyword Keyword-based searchen
  • dc.subject.keyword Topic-based filteringen
  • dc.title A topic detection and visualisation system on social media postsca
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion