Updateable inner product argument with logarithmic verifier and applications

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Daza, Vanesa
  • dc.contributor.author Ràfols, Carla
  • dc.contributor.author Zacharakis, Alexandros
  • dc.date.accessioned 2021-04-21T08:27:38Z
  • dc.date.available 2021-04-21T08:27:38Z
  • dc.date.issued 2020
  • dc.description Comunicació presentada a: 23rd IACR International Conference on Practice and Theory of Public-Key Cryptography celebrat del 4 al 7 de maig de 2020 a Edimburg, Escòcia.
  • dc.description.abstract We propose an improvement for the inner product argument of Bootle et al. (EUROCRYPT’16). The new argument replaces the unstructured common reference string (the commitment key) by a structured one. We give two instantiations of this argument, for two different distributions of the CRS. In the designated verifier setting, this structure can be used to reduce verification from linear to logarithmic in the circuit size. The argument can be compiled to the publicly verifiable setting in asymmetric bilinear groups. The new common reference string can easily be updateable. The argument can be directly used to improve verification of Bulletproofs range proofs (IEEE SP’18). On the other hand, to use the improved argument to prove circuit satisfiability with logarithmic verification, we adapt recent techniques from Sonic (ACM CCS’19) to work with the new common reference string. The resulting argument is secure under standard assumptions (in the Random Oracle Model), in contrast with Sonic and recent works that improve its efficiency (Plonk, Marlin, AuroraLight), which, apart from the Random Oracle Model, need either the Algebraic Group Model or Knowledge Type assumptions.en
  • dc.description.sponsorship The project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI18/11660053. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 713673. First author was supported by Project RTI2018-102112-B-I00 (AEI/FEDER,UE) and this paper is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 856879.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Daza V, Ràfols C, Zacharakis A. Updateable inner product argument with logarithmic verifier and applications. In: Kiayias A, Kohlweiss M, Wallden P, Zikas V, editors. 23rd IACR International Conference on Practice and Theory of Public-Key Cryptography; 2020 May 4-7; Edinburgh, UK. Cham: Springer; 2020. p. 527-57. DOI: 10.1007/978-3-030-45374-9_18
  • dc.identifier.doi http://dx.doi.org/10.1007/978-3-030-45374-9_18
  • dc.identifier.uri http://hdl.handle.net/10230/47175
  • dc.language.iso eng
  • dc.publisher Springer
  • dc.relation.ispartof Kiayias A, Kohlweiss M, Wallden P, Zikas V, editors. 23rd IACR International Conference on Practice and Theory of Public-Key Cryptography; 2020 May 4-7; Edinburgh, UK. Cham: Springer; 2020. p. 527-57
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/856879
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/713673
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/RTI2018-102112-B-I00
  • dc.rights © Springer The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-030-45374-9_18
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Zero knowledgeen
  • dc.subject.keyword Inner producten
  • dc.subject.keyword SNARKSen
  • dc.subject.keyword Range proofsen
  • dc.subject.keyword Updateableen
  • dc.title Updateable inner product argument with logarithmic verifier and applicationsen
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion