Data efficient voice cloning for neural singing synthesis

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Blaauw, Merlijn
  • dc.contributor.author Bonada, Jordi, 1973-
  • dc.contributor.author Daido, Ryunosuke
  • dc.date.accessioned 2021-02-26T07:16:55Z
  • dc.date.issued 2019
  • dc.description Comunicació presentada al IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), celebrat els dies 12 al 17 de 2019 a Brighton, Anglaterra.
  • dc.description.abstract There are many use cases in singing synthesis where creating voices from small amounts of data is desirable. In text-to-speech there have been several promising results that apply voice cloning techniques to modern deep learning based models. In this work, we adapt one such technique to the case of singing synthesis. By leveraging data from many speakers to first create a multispeaker model, small amounts of target data can then efficiently adapt the model to new unseen voices. We evaluate the system using listening tests across a number of different use cases, languages and kinds of data.en
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Blaauw M, Bonada J, Daido R. Data efficient voice cloning for neural singing synthesis. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2019 May 12-17; Brighton, United Kingdom. New Jersey: Institute of Electrical and Electronics Engineers; 2019. p. 6840-4. DOI: 10.1109/ICASSP.2019.8682656
  • dc.identifier.doi http://dx.doi.org/10.1109/ICASSP.2019.8682656
  • dc.identifier.issn 2379-190X
  • dc.identifier.uri http://hdl.handle.net/10230/46596
  • dc.language.iso eng
  • dc.publisher Institute of Electrical and Electronics Engineers (IEEE)
  • dc.relation.ispartof 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2019 May 12-17; Brighton, United Kingdom. New Jersey: Institute of Electrical and Electronics Engineers; 2019. p. 6840-4
  • dc.rights © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. http://dx.doi.org/10.1109/ICASSP.2019.8682656
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Singing synthesisen
  • dc.subject.keyword Voice cloningen
  • dc.subject.keyword Speaker embeddingen
  • dc.subject.keyword Speaker adaptationen
  • dc.subject.keyword Multispeaker modelen
  • dc.title Data efficient voice cloning for neural singing synthesisen
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion