Analysis of musical dynamics in vocal performances
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Narang, Jyoti
- dc.contributor.author Miron, Marius
- dc.contributor.author Lizarraga Seijas, Xavier
- dc.contributor.author Serra, Xavier
- dc.date.accessioned 2022-01-10T11:39:42Z
- dc.date.available 2022-01-10T11:39:42Z
- dc.date.issued 2021
- dc.description Comunicació presentada a: The 15th International Symposium on Computer Music Multidisciplinary Research celebrat del 15 al 19 de novembre de 2021 de manera virtual.
- dc.description.abstract Dynamics are one of the fundamental tools of expressivity in a performance. While the usage of this tool is highly subjective, a systematic methodology to derive loudness markings based on a performance can be highly beneficial. With this goal in mind, this paper is a first step towards developing a methodology to automatically transcribe dynamic markings from vocal rock and pop performances. To this end, we make use of commercial recordings of some popular songs followed by source separation and compare them to the karaoke versions of the same songs. The dynamic variations in the original commercial recordings are found to be structurally very similar to the aligned karaoke/multi-track versions of the same tracks. We compare and show the differences between tracks using statistical analysis, with an eventual goal to use the transcribed markings as guiding tools, to help students adapt with a specific interpretation of a given piece of music. We perform a qualitative analysis of the proposed methodology with the teachers in terms of informativeness and accuracy.
- dc.description.sponsorship Part of this research is funded by the projects Musical AI (PID2019-111403GB-I00/AEI/10.13039/501100011033 funded by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU) and the Agencia Estatal de Investigación (AEI)) and NextCore (RTC2019-007248-7 funded by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU) and the Agencia Estatal de Investigación (AEI)).
- dc.format.mimetype application/pdf
- dc.identifier.citation Narang J, Miron M, Lizarraga X, Serra X. Analysis of musical dynamics in vocal performances. In: Kitahara T, Aramaki M, Kronland-Martinet R, Ystad S, editors. Music in the AI Era. Proceedings of the 15th International Symposium on Computer Music Multidisciplinary Research; 2021 Nov 15-19; Tokyo, Japan. Japan: CMMR 2021 Organizing Committee, The Laboratory PRISM; 2021. p. 99-108.
- dc.identifier.isbn 979-10-97-498-02-3
- dc.identifier.uri http://hdl.handle.net/10230/52173
- dc.language.iso eng
- dc.publisher Les éditions de PRISM
- dc.relation.ispartof Kitahara T, Aramaki M, Kronland-Martinet R, Ystad S, editors. Music in the AI Era. Proceedings of the 15th International Symposium on Computer Music Multidisciplinary Research; 2021 Nov 15-19; Tokyo, Japan. Japan: CMMR 2021 Organizing Committee, The Laboratory PRISM; 2021.
- dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/PID2019-111403GB-I00
- dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/RTC2019-007248-7
- dc.rights © The Authors. This document is licendes under a Creative Commons License: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0/
- dc.subject.keyword Vocal Performance Assessment
- dc.subject.keyword Music Education
- dc.subject.keyword Loudness Measurement
- dc.subject.keyword Dynamics Transcription
- dc.title Analysis of musical dynamics in vocal performances
- dc.type info:eu-repo/semantics/conferenceObject
- dc.type.version info:eu-repo/semantics/publishedVersion