Mobile eHealth platform for home monitoring of bipolar disorder

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Codina Filbà, Joan
  • dc.contributor.author Escalera, Sergio
  • dc.contributor.author Escudero, Joan
  • dc.contributor.author Antens, Coen
  • dc.contributor.author Buch-Cardona, Pau
  • dc.contributor.author Farrús, Mireia
  • dc.date.accessioned 2021-02-05T11:24:56Z
  • dc.date.available 2021-02-05T11:24:56Z
  • dc.date.issued 2021
  • dc.description Comunicació presentada al 27th International Conference on Multimedia Modeling (MMM), celebrat del 22 al 24 de juny de 2021 a Praga, República Txeca.
  • dc.description.abstract People suffering Bipolar Disorder (BD) experiment changes in mood status having depressive or manic episodes with normal periods in the middle. BD is a chronic disease with a high level of non-adherence to medication that needs a continuous monitoring of patients to detect when they relapse in an episode, so that physicians can take care of them. Here we present MoodRecord, an easy-to-use, non-intrusive, multilingual, robust and scalable platform suitable for home monitoring patients with BD, that allows physicians and relatives to track the patient state and get alarms when abnormalities occur. MoodRecord takes advantage of the capabilities of smartphones as a communication and recording device to do a continuous monitoring of patients. It automatically records user activity, and asks the user to answer some questions or to record himself in video, according to a predefined plan designed by physicians. The video is analysed, recognising the mood status from images and bipolar assessment scores are extracted from speech parameters. The data obtained from the different sources are merged periodically to observe if a relapse may start and if so, raise the corresponding alarm. The application got a positive evaluation in a pilot with users from three different countries. During the pilot, the predictions of the voice and image modules showed a coherent correlation with the diagnosis performed by clinicians.en
  • dc.description.sponsorship This work is part of the MYMPHA-MD project, which has been funded by the European Union under Grant Agreement Nº 610462. It has also been partially supported by the Spanish project PID2019-105093GB-I00 (MINECO/FEDER, UE) and CERCA Programme/Generalitat de Catalunya.), and by ICREA under the ICREA Academia programme. The last author has been funded by the Agencia Estatal de Investigación (AEI), Ministerio de Ciencia, Innovación y Universidades and the Fondo Social Europeo (FSE) under grant RYC-2015-17239 (AEI/FSE, UE).
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Codina-Filbà J, Escalera S, Escudero J, Antens C, Buch-Cardona P, Farrús M. Mobile eHealth platform for home monitoring of bipolar disorder. In: Lokoč J, Skopal T, Schoeffmann K, Mezaris V, Li X, Vrochidis S, Patras I, editors. Proceedings of the 27th International Conference on Multimedia Modeling (MMM); 2021 Jun 22-24; Prague, Czech Republic. Berlin: Springer; 2021. p. 330-41. (LNCS; no. 12572). DOI: 10.1007/978-3-030-67835-7_28
  • dc.identifier.doi http://dx.doi.org/10.1007/978-3-030-67835-7_28
  • dc.identifier.uri http://hdl.handle.net/10230/46367
  • dc.language.iso eng
  • dc.publisher Springer
  • dc.relation.ispartof Lokoč J, Skopal T, Schoeffmann K, Mezaris V, Li X, Vrochidis S, Patras I, editors. Proceedings of the 27th International Conference on Multimedia Modeling (MMM); 2021 Jun 22-24; Prague, Czech Republic. Berlin: Springer; 2021. p. 330-41. (LNCS; no. 12572)
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610462
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/PID2019-105093GB-I00
  • dc.rights © Springer Nature Switzerland AG 2021. The final authenticated version is available online at https://doi.org/10.1007/978-3-030-67835-7_28
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Bipolar disorderen
  • dc.subject.keyword eHealthen
  • dc.subject.keyword Mobile monitoringen
  • dc.subject.keyword Data fusionen
  • dc.title Mobile eHealth platform for home monitoring of bipolar disorderen
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion