Smoothed particle hydrodynamics for electrophysiological modeling: an alternative to finite element methods

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Lluch Álvarez, Èricca
  • dc.contributor.author Doste Beltrán, Rubénca
  • dc.contributor.author Giffard-Roisin, Sophieca
  • dc.contributor.author This, Alexandreca
  • dc.contributor.author Sermesant, Maximeca
  • dc.contributor.author Camara, Oscarca
  • dc.contributor.author Craene, Mathieu deca
  • dc.contributor.author Morales, Hernán G.ca
  • dc.date.accessioned 2017-07-04T08:57:50Z
  • dc.date.available 2017-07-04T08:57:50Z
  • dc.date.issued 2017
  • dc.description Comunicació presentada a la 9th international conference on Functional Imaging and Modeling of the Heart (FIMH 2017), celebrada els dies 11 a 13 de juny de 2017 a Toronto, Canadà.
  • dc.description.abstract Finite element methods (FEM) are generally used in cardiac 3D-electromechanical modeling. For FEM modeling, a step of a suitable mesh construction is required, which is non-trivial and time-consuming for complex geometries. A meshless method is proposed to avoid meshing. The smoothed particle hydrodynamics (SPH) method was used to solve an electrophysiological model on a left ventricle extracted from medical imaging straightforwardly, without any need of a complex mesh. The proposed method was compared against FEM in the same left-ventricular model. Both FEM and SPH methods provide similar solutions of the models in terms of depolarization times. Main differences were up to 10.9% at the apex. Finally, a pathological application of SPH is shown on the same ventricular geometry with an added scar on the heart wall.
  • dc.description.sponsorship The work is supported by the European Union Horizon 2020 research and innovation programme under grant agreement No 642676 (CardioFunXion).
  • dc.format.mimetype application/pdfca
  • dc.identifier.citation Lluch E, Doste R, Giffard-Roisin S, This A, Sermesant M, Camara O, De Craene M, Morales HG. Smoothed particle hydrodynamics for electrophysiological modeling: an alternative to finite element methods. In: Pop M, Wright GA, editors. Functional imaging and modelling of the heart. 9th International Conference, FIMH 2017; 2017 Jun 11-13; Toronto, Canada. [place unknown]: Springer; 2017. p. 333-43. DOI: 10.1007/978-3-319-59448-4_32
  • dc.identifier.doi http://dx.doi.org/10.1007/978-3-319-59448-4_32
  • dc.identifier.uri http://hdl.handle.net/10230/32503
  • dc.language.iso eng
  • dc.publisher Springerca
  • dc.relation.ispartof Pop M, Wright GA, editors. Functional imaging and modelling of the heart. 9th International Conference, FIMH 2017; 2017 Jun 11-13; Toronto, Canada. [place unknown]: Springer; 2017. p. 333-43.
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/642676
  • dc.rights © Springer The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-59448-4_32
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword SPH
  • dc.subject.keyword Meshless
  • dc.subject.keyword FEM
  • dc.subject.keyword Cardiac electrophysiology
  • dc.title Smoothed particle hydrodynamics for electrophysiological modeling: an alternative to finite element methodsca
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/acceptedVersion