The MediaEval 2018 AcousticBrainz genre task: content-based music genre recognition from multiple sources
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Bogdanov, Dmitry
- dc.contributor.author Porter, Alastair
- dc.contributor.author Urbano, Julián
- dc.contributor.author Schreiber, Hendrik
- dc.date.accessioned 2018-11-13T13:46:05Z
- dc.date.available 2018-11-13T13:46:05Z
- dc.date.issued 2018
- dc.description Comunicació presentada al MediaEval 2018 Workshop celebrat a Sophia Antipolis (França) del 29 al 31 d'octubre de 2018.
- dc.description.abstract This paper provides an overview of the AcousticBrainz Genre Task organized as part of the MediaEval 2018 Benchmarking Initiative for Multimedia Evaluation. The task is focused on content-based music genre recognition using genre annotations from multiple sources and large-scale music features data available in the AcousticBrainz database. The goal of our task is to explore how the same music pieces can be annotated differently by different communities following different genre taxonomies, and how this should be addressed by content-based genre recognition systems. We present the task challenges, the employed ground-truth information and datasets, and the evaluation methodology.
- dc.description.sponsorship We thank all contributors to AcousticBrainz. This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No 688382 (AudioCommons) and 770376-2 (TROMPA), as well as the Ministry of Economy and Competitiveness of the Spanish Government (Reference: TIN2015-69935-P). We also thank tagtraum industries for providing the Tagtraum genre annotations.
- dc.format.mimetype application/pdf*
- dc.identifier.citation Bogdanov D, Porter A, Urbano J, Schreiber H. The MediaEval 2018 AcousticBrainz genre task: Content-based music genre recognition from multiple sources. In: Larson M, Arora P, Demarty CH, Riegler M, Bischke B, Dellandrea E, Lux M, Porter A, Jones GJF. MediaEval 2018 Multimedia Benchmark Workshop Working Notes Proceedings of the MediaEval 2018 Workshop. 2018 Oct 29-31; Sophia Antipolis, France. Aachen: CEUR; 2018. [3] p.
- dc.identifier.uri http://hdl.handle.net/10230/35744
- dc.language.iso eng
- dc.publisher CEUR Workshop Proceedings
- dc.relation.isreferencedby https://multimediaeval.github.io/2018-AcousticBrainz-Genre-Task/data/
- dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/688382
- dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/770376
- dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/TIN2015-69935-P
- dc.rights Copyright © 2018 the authors.
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.title The MediaEval 2018 AcousticBrainz genre task: content-based music genre recognition from multiple sources
- dc.type info:eu-repo/semantics/conferenceObject
- dc.type.version info:eu-repo/semantics/publishedVersion