End-to-end sound source separation conditioned on instrument labels
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Slizovskaia, Olga
- dc.contributor.author Kim, Leo
- dc.contributor.author Haro Ortega, Gloria
- dc.contributor.author Gómez Gutiérrez, Emilia, 1975-
- dc.date.accessioned 2019-05-22T08:05:00Z
- dc.date.issued 2019
- dc.description Comunicació presentada a: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing celebrat de 12 al 17 de maig de 2019 a Brighton, Regne Unit.
- dc.description.abstract Can we perform an end-to-end music source separation with a variable number of sources using a deep learning model? This paper presents an extension of the Wave-UNet [1] model which allows end-to-end monaural source separation with a non-fixed number of sources. Furthermore, we propose multiplicative conditioning with instrument labels at the bottleneck of the Wave-U-Net and show its effect on the separation results. This approach can be further extended to other types of conditioning such as audio-visual source separation and score-informed source separation.
- dc.description.sponsorship This work has received funding from the Maria de Maeztu Programme (MDM-2015-0502), ERC Innovation Programme (grant 770376, TROMPA), and MINECO/FEDER UE project (TIN2015-70410-C2-1-R).
- dc.format.mimetype application/pdf
- dc.identifier.citation Slizovskaia O, Kim L, Haro G, Gomez E. End-to-end sound source separation conditioned on instrument labels. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2019 May 12-17; Brighton, United Kingdom. New Jersey: Institute of Electrical and Electronics Engineers; 2019. p. 306-10. DOI: 10.1109/ICASSP.2019.8683800
- dc.identifier.doi http://dx.doi.org/10.1109/ICASSP.2019.8683800
- dc.identifier.issn 2379-190X
- dc.identifier.uri http://hdl.handle.net/10230/37258
- dc.language.iso eng
- dc.publisher Institute of Electrical and Electronics Engineers (IEEE)
- dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/770376
- dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/TIN2015-70410-C2-1-R
- dc.rights © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. http://dx.doi.org/10.1109/ICASSP.2019.8683800
- dc.rights.accessRights info:eu-repo/semantics/embargoedAccess
- dc.subject.keyword Sound source separation
- dc.subject.keyword End-to-end deep learning
- dc.subject.keyword Wave-U-Net
- dc.title End-to-end sound source separation conditioned on instrument labels
- dc.type info:eu-repo/semantics/conferenceObject
- dc.type.version info:eu-repo/semantics/acceptedVersion