An Analysis/synthesis framework for automatic F0 annotation of multitrack datasets

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Salamon, Justin
  • dc.contributor.author Bittner, Rachel M.
  • dc.contributor.author Bonada, Jordi, 1973-
  • dc.contributor.author Bosch, Juan J.
  • dc.contributor.author Gómez Gutiérrez, Emilia, 1975-
  • dc.contributor.author Bello, Juan Pablo
  • dc.date.accessioned 2020-02-10T13:45:05Z
  • dc.date.available 2020-02-10T13:45:05Z
  • dc.date.issued 2017
  • dc.description Comunicació presentada a: ISMIR 2017, celebrat a Suzhou, Xina, del 23 al 27 d'octubre de 2017.
  • dc.description.abstract Generating continuous f0 annotations for tasks such as melody extraction and multiple f0 estimation typically involves running a monophonic pitch tracker on each track of a multitrack recording and manually correcting any estimation errors. This process is labor intensive and time consuming, and consequently existing annotated datasets are very limited in size. In this paper we propose a framework for automatically generating continuous f0 annotations without requiring manual refinement: the estimate of a pitch tracker is used to drive an analysis/synthesis pipeline which produces a synthesized version of the track. Any estimation errors are now reflected in the synthesized audio, meaning the tracker’s output represents an accurate annotation. Analysis is performed using a wide-band harmonic sinusoidal modeling algorithm which estimates the frequency, amplitude and phase of every harmonic, meaning the synthesized track closely resembles the original in terms of timbre and dynamics. Finally the synthesized track is automatically mixed back into the multitrack. The framework can be used to annotate multitrack datasets for training learning-based algorithms. Furthermore, we show that algorithms evaluated on the automatically generated/ annotated mixes produce results that are statistically indistinguishable from those they produce on the original, manually annotated, mixes. We release a software library implementing the proposed framework, along with new datasets for melody, bass and multiple f0 estimation.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Salamon J, Bittner RM, Bonada J, Bosch JJ, Gómez E, Bello JP. An analysis/synthesis framework for automatic F0 annotation of multitrack datasets. In: Hu X, Cunningham SJ, Turnbull D, Duan Z. ISMIR 2017 Proceedings of the 18th International Society for Music Information Retrieval Conference; 2017 Oct 23-27; Suzhou, China. [Suzhou]: ISMIR; 2017. p. 71-8
  • dc.identifier.uri http://hdl.handle.net/10230/43544
  • dc.language.iso eng
  • dc.publisher International Society for Music Information Retrieval (ISMIR)
  • dc.relation.ispartof Hu X, Cunningham SJ, Turnbull D, Duan Z. ISMIR 2017 Proceedings of the 18th International Society for Music Information Retrieval Conference; 2017 Oct 23-27; Suzhou, China. [Suzhou]: ISMIR; 2017.
  • dc.rights © Justin Salamon, Rachel M. Bittner, Jordi Bonada, Juan J. Bosch, Emilia Gómez. Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Attribution: Justin Salamon, Rachel M. Bittner, Jordi Bonada, Juan J. Bosch, Emilia Gómez. “An Analysis/Synthesis Framework for Automatic F0 Annotation of Multitrack Datasets”, 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017.
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri https://creativecommons.org/licenses/by/4.0/
  • dc.title An Analysis/synthesis framework for automatic F0 annotation of multitrack datasets
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion