Neural architectures for named entity recognition

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Lample, Guillaumeca
  • dc.contributor.author Ballesteros, Miguelca
  • dc.contributor.author Subramanian, Sandeepca
  • dc.contributor.author Kawakami, Kazuyaca
  • dc.contributor.author Dyer, Chrisca
  • dc.date.accessioned 2016-12-12T10:24:16Z
  • dc.date.available 2016-12-12T10:24:16Z
  • dc.date.issued 2016ca
  • dc.description Comunicació presentada a la 2016 Conference of the North American Chapter of the Association for Computational Linguistics, celebrada a San Diego (CA, EUA) els dies 12 a 17 de juny 2016.ca
  • dc.description.abstract State-of-the-art named entity recognition systems/nrely heavily on hand-crafted features and/ndomain-specific knowledge in order to learn/neffectively from the small, supervised training/ncorpora that are available. In this paper, we/nintroduce two new neural architectures—one/nbased on bidirectional LSTMs and conditional/nrandom fields, and the other that constructs/nand labels segments using a transition-based/napproach inspired by shift-reduce parsers./nOur models rely on two sources of information/nabout words: character-based word/nrepresentations learned from the supervised/ncorpus and unsupervised word representations/nlearned from unannotated corpora. Our/nmodels obtain state-of-the-art performance in/nNER in four languages without resorting to/nany language-specific knowledge or resources/nsuch as gazetteers.en
  • dc.description.sponsorship This work was sponsored in part by the Defense/nAdvanced Research Projects Agency (DARPA)/nInformation Innovation Office (I2O) under the/nLow Resource Languages for Emergent Incidents/n(LORELEI) program issued by DARPA/I2O under/nContract No. HR0011-15-C-0114. Miguel Ballesteros/nis supported by the European Commission under/nthe contract numbers FP7-ICT-610411 (project/nMULTISENSOR) and H2020-RIA-645012 (project/nKRISTINA).en
  • dc.format.mimetype application/pdfca
  • dc.identifier.citation Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural architectures for named entity recognition. In: Knight K, Lopez A, Mitchell M, editors. Human Language Technologies. 2016 Conference of the North American Chapter of the Association for Computational Linguistics; 2016 June 12-17; San Diego (CA, USA). [S.l.]: Association for Computational Linguistics (ACL); 2016. p. 260-270.ca
  • dc.identifier.uri http://hdl.handle.net/10230/27725
  • dc.language.iso engca
  • dc.publisher ACL (Association for Computational Linguistics)ca
  • dc.relation.ispartof Knight K, Lopez A, Mitchell M, editors. Human Language Technologies. 2016 Conference of the North American Chapter of the Association for Computational Linguistics; 2016 June 12-17; San Diego (CA, USA). [S.l.]: Association for Computational Linguistics (ACL); 2016. p. 260-270.
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/645012ca
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610411
  • dc.rights © ACL, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Licenseca
  • dc.rights.accessRights info:eu-repo/semantics/openAccessca
  • dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/
  • dc.subject.other Tractament del llenguatge natural (Informàtica)ca
  • dc.subject.other Lingüística computacionalca
  • dc.title Neural architectures for named entity recognitionca
  • dc.type info:eu-repo/semantics/conferenceObjectca
  • dc.type.version info:eu-repo/semantics/publishedVersionca