Welcome to the UPF Digital Repository

Assessing the syntactic capabilities of transformer-based multilingual language models

Show simple item record

dc.contributor.author Pérez-Mayos, Laura
dc.contributor.author Táboas García, Alba
dc.contributor.author Mille, Simon
dc.contributor.author Wanner, Leo
dc.date.accessioned 2023-03-01T07:21:37Z
dc.date.available 2023-03-01T07:21:37Z
dc.date.issued 2021
dc.identifier.citation Pérez-Mayos L, Táboas García A, Mille S, Wanner L. Assessing the syntactic capabilities of transformer-based multilingual language models. In: Zong C, Xia F, Li Wenjie, Navigli R. Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021); 2021 Aug 1-6; online. Stroudsburg: Association for Computational Linguistics; 2021. p. 3799-812. DOI: 10.18653/v1/2021.findings-acl.333
dc.identifier.uri http://hdl.handle.net/10230/55970
dc.description Comunicació presentada a Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, celebrat de l'1 al 6 d'agost de 2021 de manera virtual.
dc.description.abstract Multilingual Transformer-based language models, usually pretrained on more than 100 languages, have been shown to achieve outstanding results in a wide range of crosslingual transfer tasks. However, it remains unknown whether the optimization for different languages conditions the capacity of the models to generalize over syntactic structures, and how languages with syntactic phenomena of different complexity are affected. In this work, we explore the syntactic generalization capabilities of the monolingual and multilingual versions of BERT and RoBERTa. More specifically, we evaluate the syntactic generalization potential of the models on English and Spanish tests, comparing the syntactic abilities of monolingual and multilingual models on the same language (English), and of multilingual models on two different languages (English and Spanish). For English, we use the available SyntaxGym test suite; for Spanish, we introduce SyntaxGymES, a novel ensemble of targeted syntactic tests in Spanish, designed to evaluate the syntactic generalization capabilities of language models through the SyntaxGym online platform.
dc.description.sponsorship This work has been partially funded by the European Commission via its H2020 Research Program under the contract numbers 779962, 786731, 825079, and 870930.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher ACL (Association for Computational Linguistics)
dc.relation.ispartof Zong C, Xia F, Li Wenjie, Navigli R. Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021); 2021 Aug 1-6; online. Stroudsburg: Association for Computational Linguistics; 2021. p. 3799-812.
dc.rights © ACL, Creative Commons Attribution 4.0 License
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject.other Lingüística computacional
dc.title Assessing the syntactic capabilities of transformer-based multilingual language models
dc.type info:eu-repo/semantics/conferenceObject
dc.identifier.doi http://dx.doi.org/10.18653/v1/2021.findings-acl.333
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/779962
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/786731
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825079
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/870930
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.type.version info:eu-repo/semantics/publishedVersion

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

In collaboration with Compliant to Partaking