Welcome to the UPF Digital Repository

Argumentation mining in scientific literature: from computational linguistics to biomedicine

Show simple item record

dc.contributor.author Accuosto, Pablo
dc.contributor.author Neves, Mariana
dc.contributor.author Saggion, Horacio
dc.date.accessioned 2021-05-19T07:47:36Z
dc.date.available 2021-05-19T07:47:36Z
dc.date.issued 2021
dc.identifier.citation Accuosto P, Neves M, Saggion H. Argumentation mining in scientific literature: from computational linguistics to biomedicine. In: Frommholz I, Mayr P, Cabanac G, Verberne S, editors. BIR 2021: 11th International Workshop on Bibliometric-enhanced Information Retrieval; 2021 Apr 1; Lucca, Italy. Aachen: CEUR; 2021. p. 20-36.
dc.identifier.uri http://hdl.handle.net/10230/47600
dc.description Comunicació presentada al BIR 2021: 11th International Workshop on Bibliometric-enhanced Information Retrieval, celebrat l'1 d'abril de 2021 de manera virtual.
dc.description.abstract In this work we propose to tackle the limitations posed by the lack of annotated data for argument mining in scientific texts by annotating argumentative units and relations in research abstracts in two scientific domains. We evaluate our annotations by computing inter-annotator agreements, which range from moderate to substantial according to the difficulty level of the tasks and domains. We use our newly annotated corpus to fine-tune BERT-based models for argument mining in single and multi-task settings, finally exploring the adaptation of models trained in one scientific discipline (computational linguistics) to predict the argumentative structure of abstracts in a different one (biomedicine).
dc.description.sponsorship This work was (partly) supported by the Spanish Government under the María de Maeztu Units of Excellence Programme (MDM-2015-0502) and by the Research and Innovation Agency of Uruguay (ANII). We also acknowledge support from the project Context-aware Multilingual Text Simplification (ConMuTeS) PID2019-109066GB-I00/AEI/10.13039/501100011033 awarded by Ministerio de Ciencia, Innovación y Universidades (MCIU) and by Agencia Estatal de Investigación (AEI) of Spain.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher CEUR Workshop Proceedings
dc.relation.ispartof Frommholz I, Mayr P, Cabanac G, Verberne S, editors. BIR 2021: 11th International Workshop on Bibliometric-enhanced Information Retrieval; 2021 Apr 1; Lucca, Italy. Aachen: CEUR; 2021. p. 20-36
dc.rights Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.title Argumentation mining in scientific literature: from computational linguistics to biomedicine
dc.type info:eu-repo/semantics/conferenceObject
dc.subject.keyword Argument mining
dc.subject.keyword Scientific corpora
dc.subject.keyword Domain adaptation
dc.subject.keyword Transformer models
dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/PID2019-109066GB-I00
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.type.version info:eu-repo/semantics/publishedVersion

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

Compliant to Partaking