Deep embeddings with Essentia models

Citació

  • Alonso-Jiménez P, Bogdanov D, Serra X. Deep embeddings with Essentia models. Paper presented at: International Society of Music Information Retrieval Conference (ISMIR); 2020 Oct 11-16; Montréal, Canada.

Enllaç permanent

Descripció

  • Resum

    We present the integration of various CNN TensorFlow models developed for different MIR tasks into Essentia. This is a continuation of our previous work [1], extending the list of supported models and adding new algorithms to facilitate usability. Essentia provides input feature extraction and inference with TensorFlow models in a single C++ pipeline with Python bindings, facilitating the deployment of C++ and Python MIR applications. We assess the new models’ capabilities to serve as embedding extractors in many downstream classification tasks. All presented models are publicly available on the Essentia website.
  • Descripció

    Comunicació presentada a: International Society for Music Information Retrieval Conference celebrat de l'11 al 16 d'octubre de 2020 de manera virtual.
  • Mostra el registre complet