Re-Identification and growth detection of pulmonary nodules without image registration using 3D siamese neural networks

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Rafael-Palou, Xavier
  • dc.contributor.author Aubanell, Anton
  • dc.contributor.author Bonavita, Ilaria
  • dc.contributor.author Ceresa, Mario
  • dc.contributor.author Piella Fenoy, Gemma
  • dc.contributor.author Ribas, Vicent
  • dc.contributor.author González Ballester, Miguel Ángel, 1973-
  • dc.date.accessioned 2021-02-12T07:29:53Z
  • dc.date.issued 2020
  • dc.description.abstract Lung cancer follow-up is a complex, error prone, and time consuming task for clinical radiologists. Several lung CT scan images taken at different time points of a given patient need to be individually inspected, looking for possible cancerogenous nodules. Radiologists mainly focus their attention in nodule size, density, and growth to assess the existence of malignancy. In this study, we present a novel method based on a 3D siamese neural network, for the re-identification of nodules in a pair of CT scans of the same patient without the need for image registration. The network was integrated into a two-stage automatic pipeline to detect, match, and predict nodule growth given pairs of CT scans. Results on an independent test set reported a nodule detection sensitivity of 94.7%, an accuracy for temporal nodule matching of 88.8%, and a sensitivity of 92.0% with a precision of 88.4% for nodule growth detection.
  • dc.description.sponsorship This work was partially funded by the Industrial Doctorates Program (AGAUR) grant number DI087, and the Spanish Ministry of Economy and Competitiveness (Project INSPIRE FIS2017-89535-C2-2-R, Maria de Maeztu Units of Excellence Program MDM-2015-0502).
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Rafael-Palou X, Aubanell A, Bonavita I, Ceresa M, Piella G, Ribas V, González Ballester MA. Re-Identification and growth detection of pulmonary nodules without image registration using 3D siamese neural networks. Med Image Anal. 2020 Oct 7;67:101823. DOI: 10.1016/j.media.2020.101823
  • dc.identifier.doi http://dx.doi.org/10.1016/j.media.2020.101823
  • dc.identifier.issn 1361-8415
  • dc.identifier.uri http://hdl.handle.net/10230/46460
  • dc.language.iso eng
  • dc.publisher Elsevier
  • dc.relation.ispartof Medical Image Analysis. 2020 Oct 7;67:101823.
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/FIS2017-89535-C2-2-R
  • dc.rights © Elsevier http://dx.doi.org/10.1016/j.media.2020.101823
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.title Re-Identification and growth detection of pulmonary nodules without image registration using 3D siamese neural networks
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/acceptedVersion