Ranking job offers for candidates: learning hidden knowledge from Big Data
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Poch, Marc
- dc.contributor.author Bel Rafecas, Núria
- dc.contributor.author Espeja, Sergio
- dc.contributor.author Navío, Felipe
- dc.date.accessioned 2019-03-08T11:15:04Z
- dc.date.available 2019-03-08T11:15:04Z
- dc.date.issued 2014
- dc.description Comunicació presentada a: 9th International Conference on Language Resources and Evaluation celebrada del 26 al 31 de maig de 2014 a Reykjavik, Iceland.
- dc.description.abstract This paper presents a system for suggesting a ranked list of appropriate vacancy descriptions to job seekers in a job board web site. In particular our work has explored the use of supervised classifiers with the objective of learning implicit relations which cannot be found with similarity or pattern based search methods that rely only on explicit information. Skills, names of professions and degrees, among other examples, are expressed in different languages, showing high variation and the use of ad-hoc resources to trace the relations is very costly. This implicit information is unveiled when a candidate applies for a job and therefore it is information that can be used for learning a model to predict new cases. The results of our experiments, which combine different clustering, classification and ranking methods, show the validity of the approach.
- dc.format.mimetype application/pdf
- dc.identifier.citation Poch M, Bel N, Espeja S, Navío F. Ranking job offers for candidates: learning hidden knowledge from Big Data. In: Calzolari N, Choukri K, Declerck T, Loftsson H, Maegaard B, Mariani J, Moreno A, Odijk J, Piperidis S, editors. Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014); 2014 May 26-31; Reykjavik, Iceland. Paris: European Language Resources Association; 2014. p. 2076-82.
- dc.identifier.uri http://hdl.handle.net/10230/36781
- dc.language.iso eng
- dc.publisher ACL (Association for Computational Linguistics)
- dc.relation.ispartof In: Calzolari N, Choukri K, Declerck T, Loftsson H, Maegaard B, Mariani J, Moreno A, Odijk J, Piperidis S, editors. Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014); 2014 May 26-31; Reykjavik, Iceland. Paris: European Language Resources Association; 2014. p. 2076-82.
- dc.rights © ACL, Creative Commons Attribution 3.0 License
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri https://creativecommons.org/licenses/by/3.0/es/
- dc.subject.keyword Multilingual data
- dc.subject.keyword E-recruiting
- dc.subject.keyword LDA clustering methods
- dc.subject.keyword Ranking methods
- dc.title Ranking job offers for candidates: learning hidden knowledge from Big Data
- dc.type info:eu-repo/semantics/conferenceObject
- dc.type.version info:eu-repo/semantics/publishedVersion