Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Bernard, Olivier
  • dc.contributor.author Lalande, Alain
  • dc.contributor.author Zotti, Clement
  • dc.contributor.author Cervenansky, Frederick
  • dc.contributor.author Yang, Xin
  • dc.contributor.author Heng, Pheng-Ann
  • dc.contributor.author Cetin, Irem
  • dc.contributor.author Lekadir, Karim, 1977-
  • dc.contributor.author Camara, Oscar
  • dc.contributor.author González Ballester, Miguel Ángel, 1973-
  • dc.contributor.author Sanromà, Gerard
  • dc.contributor.author Napel, Sandy
  • dc.contributor.author Petersen, Steffen
  • dc.contributor.author Tziritas, Georgios
  • dc.contributor.author Grinias, Elias
  • dc.contributor.author Khened, Mahendra
  • dc.contributor.author Kollerathu, Varghese Alex
  • dc.contributor.author Krishnamurthi, Ganapathy
  • dc.contributor.author Rohé, Marc-Michel
  • dc.contributor.author Pennec, Xavier
  • dc.contributor.author Sermesant, Maxime
  • dc.contributor.author Isensee, Fabian
  • dc.contributor.author Jäger, Paul
  • dc.contributor.author Maier-Hein, Klaus H.
  • dc.contributor.author Full, Peter M.
  • dc.contributor.author Wolf, Ivo
  • dc.contributor.author Engelhardt, Sandy
  • dc.contributor.author Baumgartner, Christian F.
  • dc.contributor.author Koch, Lisa M.
  • dc.contributor.author Wolterink, Jelmer M.
  • dc.contributor.author Išgum, Ivana
  • dc.contributor.author Jang, Yeonggul
  • dc.contributor.author Hong, Yoonmi
  • dc.contributor.author Patravali, Jay
  • dc.contributor.author Jain, Shubham
  • dc.contributor.author Humbert, Olivier
  • dc.contributor.author Jodoin, Pierre-Marc
  • dc.date.accessioned 2021-06-29T08:10:49Z
  • dc.date.available 2021-06-29T08:10:49Z
  • dc.date.issued 2018
  • dc.description.abstract Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, González Ballester MA, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging. 2018;37(11):2514-25. DOI: 10.1109/TMI.2018.2837502
  • dc.identifier.doi http://dx.doi.org/10.1109/TMI.2018.2837502
  • dc.identifier.issn 0278-0062
  • dc.identifier.uri http://hdl.handle.net/10230/48000
  • dc.language.iso eng
  • dc.publisher Institute of Electrical and Electronics Engineers (IEEE)
  • dc.relation.ispartof IEEE Transactions on Medical Imaging. 2018;37(11):2514-25
  • dc.rights © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. http://dx.doi.org/10.1109/TMI.2018.2837502
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Cardiac segmentation and diagnosis
  • dc.subject.keyword Deep learning
  • dc.subject.keyword MRI
  • dc.subject.keyword Left and right ventricles
  • dc.subject.keyword Myocardium
  • dc.title Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/acceptedVersion