Putting words in context: LSTM language models and lexical ambiguity

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Boleda, Gemma
  • dc.contributor.author Gulordava, Kristina
  • dc.contributor.author Aina, Laura
  • dc.date.accessioned 2019-10-02T12:41:19Z
  • dc.date.available 2019-10-02T12:41:19Z
  • dc.date.issued 2019
  • dc.description Comunicació presentada al 57th Annual Meeting of the Association for Computational Linguistic (ACL 2019), celebrat els dies 28 de juliol a 2 d'agost de 2019 a Florència, Itàlia.
  • dc.description.abstract In neural network models of language, words are commonly represented using context invariant representations (word embeddings) which are then put in context in the hidden layers. Since words are often ambiguous, representing the contextually relevant information is not trivial. We investigate how an LSTM language model deals with lexical ambiguity in English, designing a method to probe its hidden representations for lexical and contextual information about words. We find that both types of information are represented to a large extent, but also that there is room for improvement for contextual information.
  • dc.description.sponsorship This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 715154), and from the Ramón y Cajal programme (grant RYC-2015-18907).
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Aina L, Gulordava K, Boleda G. Putting words in context: LSTM language models and lexical ambiguity. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; 2019 Jul 28 - Aug 2; Florence, Italy. Stroudsburg (PA): ACL; 2019. p. 3342–8.
  • dc.identifier.doi http://dx.doi.org/10.18653/v1/P19-1324
  • dc.identifier.uri http://hdl.handle.net/10230/42372
  • dc.language.iso eng
  • dc.publisher ACL (Association for Computational Linguistics)
  • dc.relation.ispartof Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; 2019 Jul 28 - Aug 2; Florence, Italy. Stroudsburg (PA): ACL; 2019. p. 3342–8.
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/715154
  • dc.rights © ACL, Creative Commons Attribution 4.0 License
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.keyword Language models
  • dc.subject.keyword Lexical ambiguity
  • dc.subject.keyword Neural networks
  • dc.title Putting words in context: LSTM language models and lexical ambiguity
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion