Recognizing musical entities in user-generated content
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Porcaro, Lorenzo
- dc.contributor.author Saggion, Horacio
- dc.date.accessioned 2019-10-16T07:49:18Z
- dc.date.available 2019-10-16T07:49:18Z
- dc.date.issued 2019
- dc.description Comunicació presentada a: 20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing) celebrat del 7 al 13 d'abril de 2019 a La Rochelle, França.
- dc.description.abstract Recognizing Musical Entities is important for Music Information Retrieval (MIR) since it can improve the performance of several tasks such as music recommendation, genre classification or artist similarity. However, most entity recognition systems in the music domain have concentrated on formal texts (e.g. artists’ biographies, encyclopedic articles, etc.), ignoring rich and noisy user-generated content. In this work, we present a novel method to recognize musical entities in Twitter content generated by users following a classical music radio channel. Our approach takes advantage of both formal radio schedule and users’ tweets to improve entity recognition. We instantiate several machine learning algorithms to perform entity recognition combining task-specific and corpus-based features. We also show how to improve recognition results by jointly considering formal and user-generated content.
- dc.description.sponsorship This work is partially supported by the European Commission under the TROMPA project (H2020 770376), and by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015- 0502).
- dc.format.mimetype application/pdf
- dc.identifier.citation Porcaro L, Saggion H. Recognizing musical entities in user-generated content. Computación y Sistemas; 2019;23(3):1079-88. DOI: 10.13053/CyS-23-3-3280
- dc.identifier.doi http://dx.doi.org/10.13053/CyS-23-3-3280
- dc.identifier.issn 2007-9737
- dc.identifier.uri http://hdl.handle.net/10230/42452
- dc.language.iso eng
- dc.publisher Computing Research Center (CIC-IPN)
- dc.relation.ispartof Computación y Sistemas; 2019;23(3):1079-88.
- dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/770376
- dc.rights © Instituto Politécnico Nacional (México)
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.subject.keyword Named entity recognition
- dc.subject.keyword Music information retrieval
- dc.subject.keyword User-generated content
- dc.title Recognizing musical entities in user-generated content
- dc.type info:eu-repo/semantics/article
- dc.type.version info:eu-repo/semantics/publishedVersion