Use of semi-synthetic data for catheter segmentation improvement

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Danilov, Viacheslav V.
  • dc.contributor.author Kolpashchikov, Dmitrii Yu.
  • dc.contributor.author Gerget, Olga M.
  • dc.contributor.author Laptev, Nikita V.
  • dc.contributor.author Proutski, Alex
  • dc.contributor.author Hernández Gómez, Luis A.
  • dc.contributor.author Alvarez, Federico
  • dc.contributor.author Ledesma-Carbayo, María J.
  • dc.date.accessioned 2025-04-28T06:18:10Z
  • dc.date.available 2025-04-28T06:18:10Z
  • dc.date.issued 2023
  • dc.description.abstract In the era of data-driven machine learning algorithms, data is the new oil. For the most optimal results, datasets should be large, heterogeneous and, crucially, correctly labeled. However, data collection and labeling are time-consuming and labor-intensive processes. In the field of medical device segmentation, present during minimally invasive surgery, this leads to a lack of informative data. Motivated by this drawback, we developed an algorithm generating semi-synthetic images based on real ones. The concept of this algorithm is to place a randomly shaped catheter in an empty heart cavity, where the shape of the catheter is generated by forward kinematics of continuum robots. Having implemented the proposed algorithm, we generated new images of heart cavities with various artificial catheters. We compared the results of deep neural networks trained purely on real datasets with respect to networks trained on both real and semi-synthetic datasets, highlighting that semi-synthetic data improves catheter segmentation accuracy. A modified U-Net trained on combined datasets performed the segmentation with a Dice similarity coefficient of 92.6 ± 2.2%, while the same model trained only on real images achieved a Dice similarity coefficient of 86.5 ± 3.6%. Therefore, using semi-synthetic data allows for the decrease of accuracy spread, improves model generalization, reduces subjectivity, shortens the labeling routine, increases the number of samples, and improves the heterogeneity.en
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Danilov VV, Kolpashchikov DY, Gerget OM, Laptev NV, Proutski A, Hernández Gómez LA, et al. Use of semi-synthetic data for catheter segmentation improvement. Comput Med Imaging Graph. 2023 Jun;106:102188. DOI: 10.1016/j.compmedimag.2023.102188
  • dc.identifier.doi http://dx.doi.org/10.1016/j.compmedimag.2023.102188
  • dc.identifier.issn 0895-6111
  • dc.identifier.uri http://hdl.handle.net/10230/70211
  • dc.language.iso eng
  • dc.publisher Elsevier
  • dc.relation.ispartof Computerized Medical Imaging and Graphics. 2023 Jun;106:102188
  • dc.rights © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.keyword Semi-synthetic imagesen
  • dc.subject.keyword Ultrasounden
  • dc.subject.keyword Echocardiographyen
  • dc.subject.keyword Catheter segmentationen
  • dc.subject.keyword Forward kinematicsen
  • dc.subject.keyword Continuum robotsen
  • dc.title Use of semi-synthetic data for catheter segmentation improvementen
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion