Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Dessì, Roberto
  • dc.contributor.author Kharitonov, Eugene
  • dc.contributor.author Baroni, Marco
  • dc.date.accessioned 2022-03-04T06:49:20Z
  • dc.date.available 2022-03-04T06:49:20Z
  • dc.date.issued 2021
  • dc.description Comunicació presentada a la 35th Conference on Neural Information Processing Systems (NeurIPS 2021) celebrada del 6 a 14 de desembre de 2021 de manera virtual.
  • dc.description Inclou material suplementari: Appendix to Interpretable agent communication from scratch (with a generic visual processor emerging on the side)
  • dc.description.abstract As deep networks begin to be deployed as autonomous agents, the issue of how they can communicate with each other becomes important. Here, we train two deep nets from scratch to perform large-scale referent identification through unsupervised emergent communication. We show that the partially interpretable emergent protocol allows the nets to successfully communicate even about object classes they did not see at training time. The visual representations induced as a by-product of our training regime, moreover, when re-used as generic visual features, show comparable quality to a recent self-supervised learning model. Our results provide concrete evidence of the viability of (interpretable) emergent deep net communication in a more realistic scenario than previously considered, as well as establishing an intriguing link between this field and self-supervised visual learning.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Dessì R, Kharitonov E, Baroni M. Interpretable agent communication from scratch (with a generic visual processor emerging on the side). In: Ranzato M, Beygelzimer A, Nguyen K, Liang PS, Vaughan JW, Dauphin Y, editors. Pre-proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021); 2021 Dec 6-14; [S.l.]: NeurIPS; 2021. [13 p.].
  • dc.identifier.uri http://hdl.handle.net/10230/52623
  • dc.language.iso eng
  • dc.publisher Neural Information Processing Systems (NeurIPS)
  • dc.relation.ispartof Ranzato M, Beygelzimer A, Nguyen K, Liang PS, Vaughan JW, Dauphin Y, editors. Pre-proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021); 2021 Dec 6-14. [S.l.]: NeurIPS; 2021. [13 p.]
  • dc.rights © Roberto Dessì, Eugene Kharitonov, Marco Baroni
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.other Aprenentatge automàtic
  • dc.subject.other Xarxes neuronals (Informàtica)
  • dc.title Interpretable agent communication from scratch (with a generic visual processor emerging on the side)
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion