Critical thinking and artificial intelligence in academia: a qualitative matrix analysis procedure for evaluating AI systems
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Codina, Lluís
- dc.contributor.author Aguilera Cora, Elisenda
- dc.contributor.author Lopezosa, Carlos
- dc.contributor.author Freixa Font, Pere
- dc.date.accessioned 2025-10-10T06:19:00Z
- dc.date.available 2025-10-10T06:19:00Z
- dc.date.issued 2025
- dc.description.abstract This work introduces the Matrix AI Systems Analysis Procedure (MASIA), a qualitative, matrix-based method designed to evaluate the performance and quality of generative artificial intelligence systems within academic settings. MASIA centers on the analysis of three key components in AI-generated responses: narrative synthesis, source usage, and the formulation of new prompts. By doing so, it fosters critical thinking among users and offers valuable tools for both teaching and research.The procedure defines variables and analytical parameters that enable the comparison of different AI systems, thereby supporting informed decision-making in scholarly and research environments. Furthermore, MASIA integrates ethical considerations, including traceability, proper attribution, and plagiarism prevention, making it a flexible instrument adaptable to various academic needs and projects. The chapter concludes that MASIA is a straightforward yet powerful tool for enhancing critical thinking, improving teaching and learning processes, and providing a foundation for comparative research on artificial intelligence in academia.
- dc.description.sponsorship This work is part of the Project “Parameters and strategies to increase the relevance of media and digital communication in society: curation, visualisation and visibility (CUVICOM)”. Grant PID2021-123579OB-I00 funded by MICIU/AEI/10.13039/501100011033 and by ERDF, EU.
- dc.format.mimetype application/pdf
- dc.identifier.citation Codina L, Aguilera-Cora E, Lopezosa C, Freixa, P. Critical thinking and artificial intelligence in academia: a qualitative matrix analysis procedure for evaluating AI systems. In: Guallar J, Vállez M, Ventura-Cisquella A, coordinators. Digital communication: trends and good practices. Barcelona: Ediciones Profesionales de la Información; 2025. p.161-73. DOI: 10.3145/cuvicom.12.eng
- dc.identifier.uri http://hdl.handle.net/10230/71465
- dc.language.iso eng
- dc.publisher Ediciones Profesionales de la Información
- dc.relation.projectID info:eu-repo/grantAgreement/ES/3PE/PID2021-123579OB-I00
- dc.rights Work distributed under a license CC BY-NC-SA 4.0
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
- dc.subject.keyword Generative artificial intelligence
- dc.subject.keyword Qualitative evaluation
- dc.subject.keyword Critical thinking
- dc.subject.keyword Academic ethics
- dc.subject.keyword AI systems in academy
- dc.subject.keyword Evaluative methods
- dc.subject.keyword Analysis matrices
- dc.title Critical thinking and artificial intelligence in academia: a qualitative matrix analysis procedure for evaluating AI systems
- dc.type info:eu-repo/semantics/bookPart
- dc.type.version info:eu-repo/semantics/publishedVersion
