Unifying turbulent dynamics framework distinguishes different brain states

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Escrichs, Anira
  • dc.contributor.author Sanz Perl, Yonatan
  • dc.contributor.author Uribe, Carme
  • dc.contributor.author Camara, Estela
  • dc.contributor.author Türker, Basak
  • dc.contributor.author Pyatigorskaya, Nadya
  • dc.contributor.author López-González, Ane, 1993-
  • dc.contributor.author Pallavicini, Carla
  • dc.contributor.author Panda, Rajanikant
  • dc.contributor.author Annen, Jitka
  • dc.contributor.author Gosseries, Olivia
  • dc.contributor.author Laureys, Steven
  • dc.contributor.author Naccache, Lionel
  • dc.contributor.author Sitt, Jacobo
  • dc.contributor.author Laufs, Helmut
  • dc.contributor.author Tagliazucchi, Enzo
  • dc.contributor.author Kringelbach, Morten L.
  • dc.contributor.author Deco, Gustavo
  • dc.date.accessioned 2023-03-06T07:33:55Z
  • dc.date.available 2023-03-06T07:33:55Z
  • dc.date.issued 2022
  • dc.description.abstract Significant advances have been made by identifying the levels of synchrony of the underlying dynamics of a given brain state. This research has demonstrated that non-conscious dynamics tend to be more synchronous than in conscious states, which are more asynchronous. Here we go beyond this dichotomy to demonstrate that different brain states are underpinned by dissociable spatiotemporal dynamics. We investigated human neuroimaging data from different brain states (resting state, meditation, deep sleep and disorders of consciousness after coma). The model-free approach was based on Kuramoto’s turbulence framework using coupled oscillators. This was extended by a measure of the information cascade across spatial scales. Complementarily, the model-based approach used exhaustive in silico perturbations of whole-brain models fitted to these measures. This allowed studying of the information encoding capabilities in given brain states. Overall, this framework demonstrates that elements from turbulence theory provide excellent tools for describing and differentiating between brain states.
  • dc.description.sponsorship A.E is supported by the HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship programme. Y.S.P is supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant 896354. G.D. is supported by the Spanish national research project (ref. PID2019-105772GB-I00 MCIU AEI) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). M.L.K is supported by the Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117), and Centre for Eudaimonia and Human Flourishing at Linacre College funded by the Pettit and Carlsberg Foundations. The study was supported by the University and University Hospital of Liège, the Belgian National Funds for Scientific Research (FRS-FNRS), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, the BIAL Foundation, the Mind Science Foundation, the fund Generet of the King Baudouin Foundation, the Mind-Care foundation and AstraZeneca Foundation, the National Natural Science Foundation of China (Joint Research Project 81471100) and the European Foundation of Biomedical Research FERB Onlus. R.P is research fellow, O.G is research associate, and S.L is research director at FRS-FNRS. The authors thank all the patients and participants, and the entire staff of the Radiodiagnostic and Nuclear departments of the University Hospital of Liège.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Escrichs A, Sanz Perl Y, Uribe C, Camara E, Türker B, Pyatigorskaya N, López-González A, Pallavicini C, Panda R, Annen J, Gosseries O, Laureys S, Naccache L, Sitt JD, Laufs H, Tagliazucchi E, Kringelbach ML, Deco G. Unifying turbulent dynamics framework distinguishes different brain states. Commun Biol. 2022;5:638. DOI: 10.1038/s42003-022-03576-6
  • dc.identifier.doi http://dx.doi.org/10.1038/s42003-022-03576-6
  • dc.identifier.issn 2399-3642
  • dc.identifier.uri http://hdl.handle.net/10230/56062
  • dc.language.iso eng
  • dc.publisher Nature Research
  • dc.relation.ispartof Communications Biology. 2022;5:638.
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM1_ESM.pdf
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM2_ESM.docx
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM3_ESM.mp4
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM4_ESM.mp4
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM5_ESM.mp4
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM6_ESM.mp4
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM7_ESM.mp4
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM8_ESM.mp4
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM9_ESM.mp4
  • dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs42003-022-03576-6/MediaObjects/42003_2022_3576_MOESM10_ESM.pdf
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/945539
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/896354
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/PID2019-105772GB-I00
  • dc.rights © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.keyword Computational neuroscience
  • dc.subject.keyword Functional magnetic resonance imaging
  • dc.title Unifying turbulent dynamics framework distinguishes different brain states
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion