A two dimensional electromechanical model of a cardiomyocyte to assess intra-cellular regional mechanical heterogeneities
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Garcia Canadilla, Patricia
- dc.contributor.author Rodriguez, Jose F.
- dc.contributor.author Palazzi, Maria J.
- dc.contributor.author Gonzalez-Tendero, Anna
- dc.contributor.author Schönleitner, Patrick
- dc.contributor.author Balicevic, Vedrana
- dc.contributor.author Loncaric, Sven
- dc.contributor.author Luiken, Joost J. F. P.
- dc.contributor.author Ceresa, Mario
- dc.contributor.author Camara, Oscar
- dc.contributor.author Antoons, Gudrun
- dc.contributor.author Crispi Brillas, Fàtima
- dc.contributor.author Gratacós Solsona, Eduard
- dc.contributor.author Bijnens, Bart
- dc.date.accessioned 2019-03-25T09:51:49Z
- dc.date.available 2019-03-25T09:51:49Z
- dc.date.issued 2017
- dc.description.abstract Experimental studies on isolated cardiomyocytes from different animal species and human hearts have demonstrated that there are regional differences in the Ca2+ release, Ca2+ decay and sarcomere deformation. Local deformation heterogeneities can occur due to a combination of factors: regional/local differences in Ca2+ release and/or re-uptake, intra-cellular material properties, sarcomere proteins and distribution of the intracellular organelles. To investigate the possible causes of these heterogeneities, we developed a two-dimensional finite-element electromechanical model of a cardiomyocyte that takes into account the experimentally measured local deformation and cytosolic [Ca2+] to locally define the different variables of the constitutive equations describing the electro/mechanical behaviour of the cell. Then, the model was individualised to three different rat cardiac cells. The local [Ca2+] transients were used to define the [Ca2+]-dependent activation functions. The cell-specific local Young’s moduli were estimated by solving an inverse problem, minimizing the error between the measured and simulated local deformations along the longitudinal axis of the cell. We found that heterogeneities in the deformation during contraction were determined mainly by the local elasticity rather than the local amount of Ca2+, while in the relaxation phase deformation was mainly influenced by Ca2+ re-uptake. Our electromechanical model was able to successfully estimate the local elasticity along the longitudinal direction in three different cells. In conclusion, our proposed model seems to be a good approximation to assess the heterogeneous intracellular mechanical properties to help in the understanding of the underlying mechanisms of cardiomyocyte dysfunction.
- dc.description.sponsorship This study was partly supported by grants from Ministerio de Economia y Competitividad (ref. SAF2012-37196, TIN2014-52923-R); the Instituto de Salud Carlos III (ref. PI11/01709, PI14/00226) integrado en el Plan Nacional de I+D+I y cofinanciado por el ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) “Otra manera de hacer Europa”; the EU FP7 for research, technological development and demonstration under grant agreement VP2HF (n° 611823); The Cerebra Foundation for the Brain Injured Child (Carmarthen, Wales, UK); Obra Social “la Caixa” (Barcelona, Spain); Fundació Mutua Madrileña; Fundació Agrupació Mutua (Spain) and AGAUR 2014 SGR grant n° 928 (Barcelona, Spain). P.G.C. was supported by the Programa de Ayudas Predoctorales de Formación en investigación en Salud (FI12/00362) from the Instituto Carlos III, Spain. P.G.C wants to acknowledge to Boehringer Ingelhiem Fonds for the travel grant to do her research stay at LaBS group in Politecnico di Milano.
- dc.format.mimetype application/pdf
- dc.identifier.citation Garcia-Canadilla P, Rodriguez JF, Palazzi MJ, Gonzalez-Tendero A, Schönleitner P, Balicevic V, Loncaric S, Luiken JJFP, Ceresa M, Camara O, Antoons G, Crispi F, Gratacos E, Bijnens B. A two dimensional electromechanical model of a cardiomyocyte to assess intra-cellular regional mechanical heterogeneities. PLoS One. 2017;12(8):e0182915. DOI: 10.1371/journal.pone.0182915
- dc.identifier.doi http://dx.doi.org/10.1371/journal.pone.0182915
- dc.identifier.issn 1932-6203
- dc.identifier.uri http://hdl.handle.net/10230/36957
- dc.language.iso eng
- dc.publisher Public Library of Science (PLoS)
- dc.relation.ispartof PLoS One. 2017;12(8):e0182915
- dc.relation.projectID info:eu-repo/grantAgreement/ES/3PN/SAF2012-37196
- dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/TIN2014-52923-R
- dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/611823
- dc.rights © 2017 Garcia-Canadilla et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri https://creativecommons.org/licenses/by/4.0/
- dc.title A two dimensional electromechanical model of a cardiomyocyte to assess intra-cellular regional mechanical heterogeneities
- dc.type info:eu-repo/semantics/article
- dc.type.version info:eu-repo/semantics/publishedVersion