How to represent a word and predict it, too: improving tied architectures for language modelling

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Gulordava, Kristina
  • dc.contributor.author Aina, Laura
  • dc.contributor.author Boleda, Gemma
  • dc.date.accessioned 2020-05-08T08:38:40Z
  • dc.date.available 2020-05-08T08:38:40Z
  • dc.date.issued 2018
  • dc.description Comunicació presentada a la Conference on Empirical Methods in Natural Language Processing, celebrada els dies 31 d'octubre a 4 de novembre de 2020 a Brussel·les, Bèlgica.
  • dc.description.abstract Recent state-of-the-art neural language models share the representations of words given by the input and output mappings. We propose a simple modification to these architectures that decouples the hidden state from the word embedding prediction. Our architecture leads to comparable or better results compared to previous tied models and models without tying, with a much smaller number of parameters. We also extend our proposal to word2vec models, showing that tying is appropriate for general word prediction tasks.en
  • dc.description.sponsorship We thank German Kruszewski and the AMORE ´ team for the helpful discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 715154), and from the Ramon y Cajal programme (grant RYC-2015- ´ 18907) and the Catalan government (SGR 2017 1575). We gratefully acknowledge the support of NVIDIA Corporation with the donation of GPUs used for this research. This paper reflects the authors’ view only, and the EU is not responsible for any use that may be made of the information it contains.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Gulordava K, Aina L, Boleda G. How to represent a word and predict it, too: improving tied architectures for language modelling. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing; 2018 Oct 31 - Nov 4; Brussels, Belgium. Stroudsburg: Association for Computational Linguistics; 2018. p. 2936–41.
  • dc.identifier.uri http://hdl.handle.net/10230/44468
  • dc.language.iso eng
  • dc.publisher ACL (Association for Computational Linguistics)
  • dc.relation.ispartof In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing; 2018 Oct 31 - Nov 4; Brussels, Belgium. Stroudsburg: Association for Computational Linguistics; 2018. p. 2936–41
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/715154
  • dc.rights © ACL, Creative Commons Attribution 4.0 License
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri https://creativecommons.org/licenses/by/4.0/
  • dc.title How to represent a word and predict it, too: improving tied architectures for language modelling
  • dc.type info:eu-repo/semantics/conferenceObject
  • dc.type.version info:eu-repo/semantics/publishedVersion