GLRT-based spectrum sensing for cognitive radio with prior information
GLRT-based spectrum sensing for cognitive radio with prior information
Citació
- Font-Segura J, Wang X. GLRT-based spectrum sensing for cognitive radio with prior information. IEEE Transactions on Communications. 2010;58(7):2137-46. DOI: 10.1109/TCOMM.2010.07.090556
Enllaç permanent
Descripció
Resum
We consider the spectrum sensing problem in cognitive radio networks. We offer a framework for optimal joint detection and parameter estimation when the secondary users have only a small number of signal samples. We discuss the finite-sample optimality of the generalized likelihood ratio test (GLRT) and derive the corresponding GLRT spectrum sensing algorithms by exploiting the statistics of the received signal and the prior information on the channel, noise, as well as the data signal. An iterative GLRT sensing algorithm, and a simple non-iterative GLRT sensing algorithm are developed for slow and fast-fading channels, respectively, with the latter also serving as an approximate sensing method for slow-fading channels. The proposed techniques are also extended for spectrum sensing in orthogonal frequency-division multiple-access (OFDMA) systems and in multiple-input multiple-output (MIMO) systems. It is seen that the proposed simple non-iterative fast-fading GLRT sensing algorithm offers the best performance in all systems under considerations, including slow fading channels, fast fading channels, OFDMA systems, and MIMO systems, and it significantly outperforms several state-of-the-art spectrum sensing methods in these systems when there is noise uncertainty.