Educational toolkit based on design methodologies to promote scientific knowledge transfer in secondary schools: a graphene-centered case study
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Guasch, Blanca
- dc.contributor.author González, Marta
- dc.contributor.author Cortiñas Rovira, Sergi
- dc.date.accessioned 2020-07-24T10:51:55Z
- dc.date.available 2020-07-24T10:51:55Z
- dc.date.issued 2020
- dc.description.abstract Nanoscience and nanotechnology are two key areas in the development of new technologies. However, scientific advances in these fields are still far removed from the contents taught in schools. But what if basic concepts within these areas were introduced in secondary schools? We believe science is an essential facet of culture and the most recent scientific advances should be within everyone’s reach. With this in mind, we have developed and tested an educational toolkit to transfer complex scientific concepts in classrooms. The toolkit is based on design and creative thinking methodologies, and graphene is used as an example of a subject that is challenging to communicate within the area of nanoscience. This paper highlights the development of the toolkit and it being tested out in a secondary school by 93 students between the ages of 11 and 13. The testing was carried out through the creation of a workshop called “Graphene in the Classroom.” We determined five evaluation categories: Acquiring Knowledge, Satisfaction, Challenges, Teamwork, and Facilitator’s Role. The results show that integrating scientific content and design methodologies is a complex yet profitable strategy. The toolkit demonstrated to allow the translation of a complex language into friendlier, more approachable, and easier language. The classroom climate was positive and the presence of a facilitator enhanced motivation, empathy, scientific rigor, and adequate adaptation of contents.
- dc.format.mimetype application/pdf
- dc.identifier.citation Guasch B, González M, Cortiñas S. Educational toolkit based on design methodologies to promote scientific knowledge transfer in secondary schools: a graphene-centered case study. J Technol Sci Educ. 2020;10(1):17-31. DOI: 10.3926/jotse.787
- dc.identifier.doi http://dx.doi.org/10.3926/jotse.787
- dc.identifier.issn 2014-5349
- dc.identifier.uri http://hdl.handle.net/10230/45194
- dc.language.iso eng
- dc.publisher OmniaScience
- dc.relation.ispartof Journal of Science Education and Technology. 2020;10(1):17-31
- dc.rights Article’s contents are provided on an Attribution-Non Commercial 4.0 Creative commons International License. Readers are allowed to copy, distribute and communicate article’s contents, provided the author’s and JOTSE journal’s names are included. It must not be used for commercial purposes.
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0/
- dc.subject.keyword Educational toolkit
- dc.subject.keyword Graphene
- dc.subject.keyword Nanotechnology
- dc.subject.keyword Knowledge transfer
- dc.subject.keyword Design methodologies
- dc.subject.keyword Science education
- dc.title Educational toolkit based on design methodologies to promote scientific knowledge transfer in secondary schools: a graphene-centered case study
- dc.type info:eu-repo/semantics/article
- dc.type.version info:eu-repo/semantics/publishedVersion