Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Gomez‑Gonzalez, Emilio
- dc.contributor.author Fernandez‑Muñoz, Beatriz
- dc.contributor.author Barriga‑Rivera, Alejandro
- dc.contributor.author Navas‑Garcia, Jose Manuel
- dc.contributor.author Fernandez‑Lizaranzu, Isabel
- dc.contributor.author Muñoz‑Gonzalez, Francisco Javier
- dc.contributor.author Parrilla‑Giraldez, Ruben
- dc.contributor.author Requena‑Lancharro, Desiree
- dc.contributor.author Guerrero‑Claro, Manuel
- dc.contributor.author Gil‑Gamboa, Pedro
- dc.contributor.author Rosell‑Valle, Cristina
- dc.contributor.author Gomez‑Gonzalez, Carmen
- dc.contributor.author Mayorga‑Buiza, Maria Jose
- dc.contributor.author Martin‑Lopez, Maria
- dc.contributor.author Muñoz, Olga
- dc.contributor.author Gomez Martin, Juan Carlos
- dc.contributor.author Relimpio Lopez, Maria Isabel
- dc.contributor.author Aceituno‑Castro, Jesus
- dc.contributor.author Perales‑Esteve, Manuel A.
- dc.contributor.author Puppo‑Moreno, Antonio
- dc.contributor.author Gómez Gutiérrez, Emilia, 1975-
- dc.contributor.author Sanchez Pernaute, Rosario
- dc.contributor.author Padillo‑Ruiz, Javier
- dc.contributor.author Marquez‑Rivas, Javier
- dc.date.accessioned 2023-02-22T07:25:32Z
- dc.date.available 2023-02-22T07:25:32Z
- dc.date.issued 2021
- dc.description.abstract Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·μ L−1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic.
- dc.description.sponsorship This research was funded by grants number COV20-00080 and COV20-00173 of the 2020 Emergency Call for Research Projects about the SARS-CoV-2 virus and the COVID-19 disease of the Institute of Health ‘Carlos III’, Spanish Ministry of Science and Innovation, and by grant number EQC2019-006240-P of the 2019 Call for Acquisition of Scientifc Equipment, FEDER Program, Spanish Ministry of Science and Innovation. This work has been supported by the European Commission through the JRC HUMAINT project. ABR was supported by grant number RTI2018-094465-J funded by the Spanish National Agency of Research.
- dc.format.mimetype application/pdf
- dc.identifier.citation Gomez‑Gonzalez E, Fernandez‑Muñoz B, Barriga‑Rivera, A, Navas‑Garcia JM, Fernandez‑Lizaranzu I, Munoz‑Gonzalez FJ, Parrilla‑Giraldez R, Requena‑Lancharro D, Guerrero‑Claro M, Gil‑Gamboa P, Rosell‑Valle C, Gomez‑Gonzalez C, Mayorga‑Buiza MJ, Martin‑Lopez M, Muñoz O, Gomez Martin JC, Relimpio Lopez MI, Aceituno‑Castro J, Perales‑Esteve MA, Puppo‑Moreno A, Garcia Cozar FJ, Olvera‑Collantes L, de los Santos‑Trigo S, Gomez E, Sanchez Pernaute R, Padillo‑Ruiz J, Marquez‑Rivas J. Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples. Sci Rep. 2021;11:16201. DOI: 10.1038/s41598-021-95756-3
- dc.identifier.doi http://dx.doi.org/10.1038/s41598-021-95756-3
- dc.identifier.issn 2045-2322
- dc.identifier.uri http://hdl.handle.net/10230/55845
- dc.language.iso eng
- dc.publisher Nature Research
- dc.relation.ispartof Scientific Reports. 2021;11:16201.
- dc.relation.isreferencedby https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-021-95756-3/MediaObjects/41598_2021_95756_MOESM1_ESM.docx
- dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/RTI2018-094465-J
- dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/EQC2019-006240-P
- dc.rights © Springer Nature Publishing AG https://doi.org/10.1038/s41598-021-95756-3 Creative Commons Attribution Non-Commercial Share Alike
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri http://creativecommons.org/licenses/by/4.0/
- dc.subject.other Imatges--Processament
- dc.subject.other Aliments--Indústria i comerç
- dc.title Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
- dc.type info:eu-repo/semantics/article
- dc.type.version info:eu-repo/semantics/publishedVersion