The Dirichlet problem for the total variation flow

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Andreu, Fuensanta
  • dc.contributor.author Ballester, Coloma
  • dc.contributor.author Caselles, Vicente
  • dc.contributor.author Mazón, José
  • dc.date.accessioned 2018-12-19T13:51:40Z
  • dc.date.available 2018-12-19T13:51:40Z
  • dc.date.issued 2001
  • dc.description.abstract We introduce a new concept of solution for the Dirichlet problem for the total variational flow named entropy solution. Using Kruzhkov's method of doubling variables both in space and in time we prove uniqueness and a comparison principle in L1 for entropy solutions. To prove the existence we use the nonlinear semigroup theory and we show that when the initial and boundary data are nonnegative the semigroup solutions are strong solutions.
  • dc.description.sponsorship The first and fourth authors have been partially supported by the Spanish DGICYT, Project PB98-1442. The second and third authors acknowledge partial support by the TMR European Project "Viscosity Solutions and their Applications'' reference FMRX-CT98-0234.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Andreu F, Ballester C, Caselles V, Mazón JM. The Dirichlet problem for the total variation flow. J Funct Anal. 2001 Mar 10;180(2):347-403. DOI: 10.1006/jfan.2000.3698
  • dc.identifier.doi http://dx.doi.org/10.1006/jfan.2000.3698
  • dc.identifier.issn 0022-1236
  • dc.identifier.uri http://hdl.handle.net/10230/36150
  • dc.language.iso eng
  • dc.publisher Elsevier
  • dc.relation.ispartof Journal of Functional Analysis. 2001 Mar 10;180(2):347-403.
  • dc.rights © Elsevier http://dx.doi.org/10.1006/jfan.2000.3698
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.title The Dirichlet problem for the total variation flow
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/acceptedVersion