Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Sanchez Martinez, Sergio
  • dc.contributor.author Duchateau, Nicolas
  • dc.contributor.author Erdei, Tamas
  • dc.contributor.author Kunszt, Gabor
  • dc.contributor.author Aakhus, Svend
  • dc.contributor.author Degiovanni, Anna
  • dc.contributor.author Marino, Paolo
  • dc.contributor.author Carluccio, Erberto
  • dc.contributor.author Piella Fenoy, Gemma
  • dc.contributor.author Fraser, Alan G.
  • dc.contributor.author Bijnens, Bart
  • dc.date.accessioned 2019-03-26T11:00:26Z
  • dc.date.available 2019-03-26T11:00:26Z
  • dc.date.issued 2018
  • dc.description.abstract Current diagnosis of heart failure with preserved ejection fraction (HFpEF) is suboptimal. We tested the hypothesis that comprehensive machine learning (ML) of left ventricular function at rest and exercise objectively captures differences between HFpEF and healthy subjects.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Sanchez-Martinez S, Duchateau N, Erdei T, Kunszt G, Aakhus S, Degiovanni A, Marino P, Carluccio E, Piella G, Fraser AG, Bijnens BH. Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction. Circ Cardiovasc Imaging. 2018 Apr 16;11(4):e007138. DOI: 10.1161/CIRCIMAGING.117.007138
  • dc.identifier.doi http://dx.doi.org/10.1161/CIRCIMAGING.117.007138
  • dc.identifier.issn 1941-9651
  • dc.identifier.uri http://hdl.handle.net/10230/36968
  • dc.language.iso eng
  • dc.publisher American Hearth Association
  • dc.relation.ispartof Circulation: Cardiovascular Imaging. 2018 Apr 16;11(4):e007138
  • dc.rights © American Hearth Association http://dx.doi.org/10.1161/CIRCIMAGING.117.007138
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Echocardiography
  • dc.subject.keyword Machine learning
  • dc.subject.keyword Early diagnosis
  • dc.subject.keyword Heart failure
  • dc.subject.keyword Diastolic
  • dc.subject.keyword Ultrasonography
  • dc.subject.keyword Doppler
  • dc.subject.keyword Stress
  • dc.title Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/acceptedVersion