The extraction of abstract structures from speech (or from gestures in the case of sign languages) has been claimed to be a fundamental mechanism for language acquisition. In the present study we registered the neural responses that are triggered when a violation of an abstract, token-independent rule is detected. We registered ERPs while presenting participants with trisyllabic CVCVCV nonsense words in an oddball paradigm. Standard stimuli followed an ABB rule (where A and B are different syllables). ...
The extraction of abstract structures from speech (or from gestures in the case of sign languages) has been claimed to be a fundamental mechanism for language acquisition. In the present study we registered the neural responses that are triggered when a violation of an abstract, token-independent rule is detected. We registered ERPs while presenting participants with trisyllabic CVCVCV nonsense words in an oddball paradigm. Standard stimuli followed an ABB rule (where A and B are different syllables). Importantly, to distinguish neural responses triggered by changes in surface information from responses triggered by changes in the underlying abstract structure, we used two types of deviant stimuli. Phoneme deviants differed from standards only in their phonemes. Rule deviants differed from standards in both their phonemes and their composing rule. We observed a significant positivity as early as 300 ms after the presentation of deviant stimuli that violated the abstract rule (Rule deviants). The amplitude of this neural response was correlated with participants’ performance in a behavioral rule learning test. Differences in electrophysiological responses observed between learners and non-learners suggest that individual differences in an abstract rule learning task might be related to how listeners select relevant sources of information.
+