Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author López De Maturana, Evangelinaca
  • dc.contributor.author Ye, Yuanqingca
  • dc.contributor.author Calle, M. Luzca
  • dc.contributor.author Rothman, Nathanielca
  • dc.contributor.author Urrea, Víctorca
  • dc.contributor.author Kogevinas, Manolisca
  • dc.contributor.author Petrus, Sandraca
  • dc.contributor.author Chanock, Stephen J.ca
  • dc.contributor.author Tardón, Adoninaca
  • dc.contributor.author García Closas, Montserratca
  • dc.contributor.author González Neira, Annaca
  • dc.contributor.author Vellalta, Gemmaca
  • dc.contributor.author Carrato, Alfredoca
  • dc.contributor.author Navarro i Cuartiellas, Arcadi, 1969-ca
  • dc.contributor.author Lorente-Galdós, Belén, 1981-ca
  • dc.contributor.author Silverman, Debra T.ca
  • dc.contributor.author Real, Francisco X.ca
  • dc.contributor.author Wu, Xifengca
  • dc.contributor.author Malats i Riera, Núriaca
  • dc.date.accessioned 2015-05-21T10:57:53Z
  • dc.date.available 2015-05-21T10:57:53Z
  • dc.date.issued 2013ca
  • dc.description.abstract The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.en
  • dc.description.sponsorship The work was partially supported by the Fondo de Investigación Sanitaria, Instituto de Salud Carlos III (G03/174, 00/0745, PI051436, PI061614, PI09-02102, G03/174 and Sara Borrell fellowship to ELM) and Ministry of Science and Innovation (MTM2008-06747-C02-02 and FPU fellowship award to VU), Spain; AGAUR-Generalitat de Catalunya (Grant 2009SGR-581); Fundació la Marató de TV3; Red Temática de Investigación Cooperativa en Cáncer (RTICC); Asociación Española Contra el Cáncer (AECC); EU-FP7-201663; and RO1- CA089715 and CA34627; the Spanish National Institute for Bioinformatics (www.inab.org); and by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA. MD Anderson support for this project included U01 CA 127615 (XW); R01 CA 74880 (XW); P50 CA 91846 (XW, CPD); Betty B. Marcus Chair fund in Cancer Prevention (XW); UT Research Trust fund (XW) and R01 CA131335 (JG)en
  • dc.format.mimetype application/pdfca
  • dc.identifier.citation De Maturana EL, Ye Y, Calle ML, Rothman N, Urrea V, Kogevinas M et al. Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk. PLoS ONE. 2013;8(12):e83745. DOI: 10.1371/journal.pone.0083745ca
  • dc.identifier.doi http://dx.doi.org/10.1371/journal.pone.0083745
  • dc.identifier.issn 1932-6203ca
  • dc.identifier.uri http://hdl.handle.net/10230/23607
  • dc.language.iso engca
  • dc.publisher Public Library of Science (PLoS)ca
  • dc.relation.ispartof PLoS ONE. 2013;8(12):e83745
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/3PN/MTM2008-06747
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/201663
  • dc.rights © 2013 de Maturana et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedca
  • dc.rights.accessRights info:eu-repo/semantics/openAccessca
  • dc.subject.other Bufeta -- Càncerca
  • dc.subject.other Tabac -- Efectes fisiològicsca
  • dc.title Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer riskca
  • dc.type info:eu-repo/semantics/articleca
  • dc.type.version info:eu-repo/semantics/publishedVersionca