Evolutionary algorithm for the optimization of meal intake and insulin administration in patients with type 2 diabetes

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author González Flo, Eva, 1993-
  • dc.contributor.author Kheirabadi, Elaheh
  • dc.contributor.author Rodríguez Caso, Carlos
  • dc.contributor.author Macía, Javier
  • dc.date.accessioned 2023-06-06T06:09:36Z
  • dc.date.available 2023-06-06T06:09:36Z
  • dc.date.issued 2023
  • dc.description.abstract The optimal management of type 2 diabetes (T2DM) is complex and involves an appropriate combination of diet, exercise, and different pharmacological treatments. Artificial intelligence-based tools have been shown to be very useful for the diagnosis and treatment of diverse pathologies, including diabetes. In the present study, we present a proof of concept of the potential of an evolutionary algorithm to optimize the meal size, timing and insulin dose for the control of glycemia. We found that an appropriate distribution of food intake throughout the day permits a reduction in the insulin dose required to maintain glycemia within the range recommended by the American Diabetes Association for patients with T2DM of a range of severities. Furthermore, the effects of restrictions to both the timing and amount of food ingested were assessed, and we found that an increase in the amount of insulin was required to control glycemia as dietary intake became more restricted. In the near future, the use of these computational tools should permit patients with T2DM to optimize their personal meal schedule and insulin dose, according to the severity of their diabetes.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Gonzalez-Flo E, Kheirabadi E, Rodriguez-Caso C, Macía J. Evolutionary algorithm for the optimization of meal intake and insulin administration in patients with type 2 diabetes. Front Physiol. 2023 Apr 6;14:1149698. DOI: 10.3389/fphys.2023.1149698
  • dc.identifier.doi http://dx.doi.org/10.3389/fphys.2023.1149698
  • dc.identifier.issn 1664-042X
  • dc.identifier.uri http://hdl.handle.net/10230/57046
  • dc.language.iso eng
  • dc.publisher Frontiers
  • dc.relation.ispartof Front Physiol. 2023 Apr 6;14:1149698
  • dc.rights © 2023 Gonzalez-Flo, Kheirabadi, Rodriguez-Caso and Macía. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.keyword AI in diabetes
  • dc.subject.keyword Computational modeling
  • dc.subject.keyword Diabetes type 2 (T2D)
  • dc.subject.keyword Evolutionary algorithm (EA)
  • dc.subject.keyword Glyceamia regulation
  • dc.title Evolutionary algorithm for the optimization of meal intake and insulin administration in patients with type 2 diabetes
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion