Bioinformatics approaches for integration and analysis of fungal omics data oriented to knowledge discovery and diagnosis
Bioinformatics approaches for integration and analysis of fungal omics data oriented to knowledge discovery and diagnosis
Enllaç permanent
Descripció
Resum
Aquesta tesi presenta una sèrie de recursos bioinformàtics desenvolupats per a donar suport en l'anàlisi de dades de NGS i altres òmics en el camp d'estudi i diagnòstic d'infeccions fúngiques. Hem dissenyat tècniques de computació per identificar nous biomarcadors i determinar potencial trets de resistència, pronosticant les característiques de les seqüències d'ADN/ARN, i planejant estratègies optimitzades de seqüenciació per als estudis de hoste-patogen transcriptomes (Dual RNA-seq). Hem dissenyat i desenvolupat tambe una solució bioinformàtica composta per un component de costat de servidor (constituït per diferents pipelines per a fer anàlisi VariantSeq, Denovoseq i RNAseq) i un altre component constituït per eines software basades en interfícies gràfiques (GUIs) per permetre a l'usuari accedir, gestionar i executar els pipelines mitjançant interfícies amistoses. També hem desenvolupat i validat un software per a l'anàlisi de seqüències i el disseny dels primers (SeqEditor) orientat a la identificació i detecció d'espècies en el diagnòstic de la PCR. Finalment, hem desenvolupat CandidaMine una base de dades integrant dades omiques de fongs patògens.
The aim of this thesis has been to develop a series of bioinformatic resources for analysis of NGS data, proteomics, or other omics technologies in the field of study and diagnosis of yeast infections. In particular, we have explored and designed distinct computational techniques to identify novel biomarker candidates of resistance traits, to predict DNA/RNA sequences’ features, and to optimize sequencing strategies for host-pathogen transcriptome sequencing studies (Dual RNA-seq). We have designed and developed an efficient bioinformatic solution composed of a server-side component constituted by distinct pipelines for VariantSeq, Denovoseq and RNAseq analyses as well as another component constituted by distinct GUI-based software to let the user to access, manage and run the pipelines with friendly-to-use interfaces. We have also designed and developed SeqEditor a software for sequence analysis and primers design for species identification and detection in PCR diagnosis. We also have developed CandidaMine an integrated data warehouse of fungal omics and for data analysis and knowledge discovery.
Programa de doctorat en BiomedicinaCol·leccions
Mostra el registre complet